Свойства воды — химические и физические свойства воды в жидком состоянии. Формула воды III Определяем количество ковалентных связей в молекуле воды

О.В.Мосин

Тяжёлая вода (оксид дейтерия) - имеет ту же химическую формулу, что и обычная вода, но вместо атомов водорода содержит два тяжёлых изотопа водорода - атомы дейтерия. Формула тяжёловодородной воды обычно записывается как: D2O или 2H2O. Внешне тяжёлая вода выглядит как обычная - бесцветная жидкость без вкуса и запаха.

По своим свойствам тяжелая вода заметно отличается от обычной воды. Реакции с тяжелой водой протекают медленнее, чем с обычной, константы диссоциации молекулы тяжёлой воды меньше таковых для обычной воды.

Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году году. А уже в 1933 году Гильберт Льюис получил чистую тяжёловодородную воду путём электролиза обычной воды.

В природных водах соотношение между тяжёлой и обычной водой составляет 1:5500 (в предположении, что весь дейтерий находится в виде тяжёлой воды D2O, хотя на самом деле он частично находится в составе полутяжёлой воды HDO).

Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности, более высокие концентрации приводят к быстрой гибели животного. Однако некоторые микроорганизмы способны жить в 70%-ной тяжёлой воде) (простейшие) и даже в чистой тяжёлой воде (бактерии). Человек может без видимого вреда для здоровья выпить стакан тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней. В этом отношении тяжёлая вода менее токсична, чем, например, поваренная соль.

Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична. Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока (ориентировочно 200-250 долларов за кг).

Физические свойства обычной и тяжёлой воды

Физические свойства

Молекулярная масса

Плотность при 20°C (г/см3)

t° кристаллизации (°C)

t° кипения (°C)

Свойства тяжёлой воды

Важнейшим свойством тяжёлой воды является то, что она практически не поглощает нейтроны, поэтому используется в ядерных реакторах для торможения нейтронов и в качестве теплоносителя . Она используется также в качестве изотопного индикатора в химии и биологии. В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино; так, крупнейший детектор солнечных нейтрино в Канаде содержит 1 килотонну тяжёлой воды.

Российскими учёными из ПИЯВ разработаны на опытных установках оригинальные технологии получения и очистки тяжелой воды. В 1995 была введена в эксплуатацию первая в России и одна из первых в мире опытно-промышленная установка на основе метода изотопного обмена в системе вода-водород и электролиза воды (ЭВИО).

Высокая эффективность установки ЭВИО дает возможность получать тяжелую воду с содержанием дейтерия > 99,995 % ат. Отработанная технология обеспечивает высокое качество тяжелой воды, включая глубокую очистку тяжелой воды от трития до остаточной активности, позволяющей без ограничений использовать тяжелую воду в медицинских и научных целях. Возможности установки позволяют полностью обеспечить потребности российских предприятий и организаций в тяжелой воде и дейтерии, а также экспортировать часть продукции. За время работы для нужд Росатома и других предприятий России были произведены более 20 тонн тяжёлой воды и десятки килограммов газообразного дейтерия.

Существует также и полутяжёлая (или дейтериевая) вода, у которой только один атом водорода замещен дейтерием. Формулу такой воды записывают так: DHO.

Термин тяжёлая вода применяют также по отношению к воде, у которой любой из атомов заменен тяжёлым изотопом:

К тяжёлокислородной воде (в ней лёгкий изотоп кислорода 16O замещен тяжёлыми изотопами 17O или 18O),

К тритиевой и сверхтяжёлой воде (содержащей вместо атомов 1H его радиоактивный изотоп тритий 3H).

Если подсчитать все возможные различные соединения с общей формулой Н2О, то общее количество возможных «тяжёлых вод» достигнет 48. Из них 39 вариантов - радиоактивные, а стабильных вариантов всего девять:
Н216O, Н217O, Н218O, HD16O, HD17O, HD18O, D216O, D217O, D218O.
На сегодняшний день в лабораториях получены не все варианты тяжёлой воды.

Тяжелая вода играет значительную роль в различных биологических процессах . Российские исследователи давно обнаружили, что тяжелая вода тормозит рост бактерий, водорослей, грибов, высших растений и культуры тканей животных. А вот вода со сниженной до 50% концентрацией дейтерия (так называемая "бездейтериевая" вода) обладает антимутагенными свойствами, способствует увеличению биомассы и количества семян, ускоряет развитие половых органов и стимулирует сперматогенез у птиц.

За рубежом пробовали поить тяжелой водой мышей со злокачественными опухолями. Та вода оказалась по настоящему мертвой: и опухоли губила, и мышей. Различные исследователи установили, что тяжелая вода действует отрицательно на растительные и живые организмы. Подопытных собак, крыс и мышей поили водой, треть которой была заменена тяжелой водой. Через недолгое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали. И наоборот, снижение содержания дейтерия на 25% ниже нормы в воде, которую давали животным, благотворно сказалось на их развитии: свиньи, крысы и мыши дали потомство, во много раз многочисленнее и крупнее обычного, а яйценосность кур поднялась вдвое.

Тогда Российские исследователи взялись за "облегченную" воду. Эксперименты проводили на 3 моделях перевиваемых опухолей: карцинома легких Льюис, быстро растущая саркома матки и рак шейки матки, который развивается медленно. "Бездейтериевую" воду исследователи получали по технологии, разработанной в Институте космической биологии. В основе метода лежит электролиз дистиллированной воды. В опытных группах животные с перевитыми опухолями получали воду с пониженным содержанием дейтерия, в контрольных группах - обычную. Животные начали пить "облегченную" и контрольную воду в день перевивки опухоли и получали ее до последнего дня жизни.

Вода с пониженным содержанием дейтерия задерживает появление первых узелков на месте перевивки рака шейки матки. На время возникновения узелков других типов опухоли облегченная вода не действует. Но во всех опытных группах, начиная с первого дня измерений и практически до завершения эксперимента, объем опухолей был меньше, чем в контрольной группе. К сожалению, хотя тяжёлая вода и тормозит развитие всех исследованных опухолей, жизнь экспериментальным мышам она не продлевает.

И тогда раздались голоса в пользу полного изъятия дейтерия из употребленной в пищу воды. Это привело бы к ускорению обменных процессов в организме человека, а, следовательно, к увеличению его физической и интеллектуальной активности. Но вскоре возникли опасения, что полное изъятие из воды дейтерия приведет к сокращению общей длительности человеческой жизни. Ведь известно, что наш организм почти на 70% состоит из воды. И в этой воде 0,015% дейтерия. По количественному содержанию (в атомных процентах) он занимает 12-е место среди химических элементов, из которых состоит организм человека. В этом отношении его следует отнести к разряду микроэлементов. Содержание таких микроэлементов как медь, железо, цинк, молибден, марганец в нашем теле в десятки и сотни раз меньше, чем дейтерия. Что же случится, если удалить весь дейтерий? На этот вопрос науке еще предстоит ответить. Пока же несомненным является тот факт, что, меняя количественное содержание дейтерия в растительном или животном организме, мы можем ускорять или замедлять ход жизненных процессов .

Из оксидов водорода самым распространенным на Земле является вода. Эмпирическая формула – Н2О. Молекулярная масса – 18. Строение молекулы воды (структурная формула):

Молекулы воды имеют треугольную формулу: атомы водорода образуют с атомом кислорода угол, равный 104,3 %. Вблизи атома кислорода образуется отрицательно заряженное поле, т. к. наибольшая электронная плотность сосредотачивается на атоме кислорода, а вблизи атомов водорода образуется положительно заряженное поле – молекула воды – диполь. Вследствие полярности молекулы воды ассоциируют, образуя водородные связи. Последние обуславливают все физические свойства воды.

Физические свойства: вода – бесцветная жидкость, без вкуса и запаха, плотность – 1 г/см3; температура замерзания – 0 °C (лед), кипения – 100 °C (пар). При 100 °C и нормальном давлении водородные связи рвутся и вода переходит в газообразное состояние – пар. У воды плохая тепло-и электропроводность, но хорошая растворимость.

Химические свойства: вода незначительно диссоциирует:

В присутствии воды идет гидролиз солей – разложение их водой с образованием слабого электролита:

Взаимодействует со многими основными оксидами, металлами:

С кислотными оксидами:

Получение: вода образуется при горении водорода в кислороде: 2Н2 + О2 = 2Н2О

Эта реакция протекает мгновенно при 700 °C. Смесь двух объемов водорода и одного объема кислорода называется гремучей смесью . Методом перегонки получают чистую воду – дистиллированную воду.

Нахождение в природе: вода составляет 2/3 поверхности Земли. Природная вода не бывает чистой, т. к. в ней растворено огромное количество солей. Вода входит в состав многих кристаллогидратов: Nа2СО3 ? 10Н2О ; CuSO4 ? 5Н2О ; MgSO4? 7Н2О . Тяжелая вода D2О отличается от обычной, образованной водородом – протием – наличием в ней второго изотопа водорода – D (дейтерия), Аr которого – 2, следовательно, молекулярная масса тяжелой воды – 20. Плотность D2О = 1,1050 г/см3; температура кипения – 101,4 °C, замерзания – 3,8 °C. Химически менее активна. Применяется в качестве замедлителя нейтронов в ядерных реакторах. Она непригодна для жизненных процессов, т. к. изменяет скорость биохимических реакций. В обычной воде частично содержится тяжелая вода.

Молекула воды состоит из одного атома кислорода и двух атомов водорода (H 2 O). Схематично строение молекулы воды можно изобразить так:

Молекула воды является так называемой полярной молекулой, потому что ее положительный и отрицательный заряды не распределены равномерно вокруг какого-то центра, а размещены асимметрично, образуя положительный и отрицательный полюсы. Рисунок показывает в чрезвычайно упрощенном виде, как присоединены два атома водорода к одному атому кислорода, образуя молекулу воды.

Угол отмеченный на рисунке и расстояние между атомами зависит от агрегатного состояния воды (подразумеваются равновесные параметры, т.к. имеют место постоянные колебания). Так в парообразном состоянии угол равен 104° 40", расстояние O-H - 0,096 нм; во льду угол - 109° 30", расстояние O-H - 0,099 нм. Различие параметром молекулы в парообразном (свободном) состоянии и во льду вызвано влиянием соседних молекул. Также влиянию подвержены и молекулы в жидкой фазе, в которой помимо влияния соседних молекул воды существует сильное влияние растворенных ионов других веществ.

История определения состава молекулы воды

Начиная с истоков химии учёные в продолжение довольно большого периода времени считали воду простым веществом, так как она не могла быть разложена в результате тех реакций, которые были известны в то время. Кроме того, постоянство свойств воды как бы подтверждало это положение.

Весной 1783 г., Канендиш в своей кембриджской лаборатории работал с недавно открытым "жизненным воздухом" - так в то время называли кислород, и "горючим воздухом" (так называли водород). Он смешивал один объем "жизненного воздуха" с двумя объемами "горючего воздуха" и пропускал через смесь электрический разряд. Смесь вспыхивала, и стенки колбы покрывались капельками жидкости. Исследуя жидкость, ученый пришел к выводу, что это чистая вода. Ранее подобное явление описал французский химик Пьер Макер: он ввел в пламя "горючего воздуха" фарфоровое блюдце, на котором образовались капельки жидкости. Каково же было удивление Макера, когда он исследовал образовавшуюся жидкость, и обнаружил что это вода. Получался какой-то парадокс: вода, гасящая огонь, сама образуется при горении. Как мы теперь понимаем, происходил синтез воды из кислорода и водорода:

H 2 + O 2 → 2H 2 O + 136,74 ккал.

В обычных условиях эта реакция не идет, и чтобы водород стал активен, нужно повысить температуру смеси например с помощью электрической искры, как в опытах Кавендиша. Генри Кавендиш располагал достаточными данными, чтобы установить, в каких пропорциях входит кислород и водород в состав воды. Но он этого не сделал. Возможно, ему помешала глубокая вера в теорию флогистона, в рамках которой он пытался интерпретировать свои эксперименты.

Весть об опытах Кавендиша достигла Парижа в июне того же года. Лавуазье сразу же повторил эти опыты, затем провел целую серию подобных экспериментов и через несколько месяцев 12 ноября 1783 г. в день святого Мартина доложил результаты исследований на традиционном собрании Французской академии наук. Любопытно название его доклада, характерное для всей той несуетливой педантичной эпохи великих открытий естествознания: "О природе воды и экспериментах, по-видимому, подтверждающих, что это вещество не является, строго говоря, элементом, а может быть разложено и образовано вновь". Доклад был встречен горячими возражениями - данные Лавуазье явно противоречили уважаемой и популярной в то время теории флогистона. Он сделал правильный вывод, что вода образуется при соединении "горючего газа" с кислородом и содержит (по массе) 15% первого и 85% второго (современные данные - 11,19% и 88,81%).

Через два года Лавуазье вновь вернулся к опытам с водой. Академия наук поставила перед Лавуазье практическую задачу - найти дешевый способ получения водорода как самого легкого газа для нужд нарождающегося воздухоплавания. Лавуазье привлек к работе военного инженера, математика и химика Жана Мёнье. В качестве исходного вещества они выбрали воду - вряд ли можно было отыскать сырье дешевле. Зная, что вода - это соединение водорода с кислородом, они пытались найти способ отнять от нее кислород. Для этой цели годились различные восстановители, наиболее же доступным было металлическое железо. Из реторты-кипятильника водяные пары поступали в раскаленный докрасна на жаровне ружейный ствол с железными опилками. При температуре красного каления (800 °С) железо вступает в реакцию с водяным паром, и выделяется водород:

3Fe + 4H 2 O → Fe 3 O 4 + 4H 2

Образовавшийся при этом водород собирался, а не прореагировавшие водяные пары конденсировались в холодильнике и отделялись в виде конденсата от водорода. Из каждых 100 гран воды получалось 15 гран водорода и 85 гран кислорода (1гран = 62,2мг). Эта работа имела и важное теоретическое значение. Она подтвердила ранее сделанные выводы (из опыта по сжиганию водорода в кислороде под колоколом), что вода содержит 15% водорода и 85% кислорода (современные данные - 11,19% и 88,81%).

Исходя из того, что "горючий воздух" участвует в образовании воды, французский химик Гитон де Морво в 1787 г. предложил назвать его hydrogene (от слов гидро- вода и геннао-рождаю). Русское слово "водород", т.е. "рождающий воду", является точным переводом латинского названия.

Жозеф Луи Гей-Люссак и Александр Гумбольдт, проведя совместные опыты в 1805 году, впервые установили, что для образования воды необходимы два объема водорода и один объем кислорода. Подобные мысли были высказаны и итальянским ученым Амедео Авогадро. В 1842 г. Жан Батист Дюма установил весовое соотношение водород и кислорода в воде как 2:16.

Однако в силу того что с атомными массами элементов в первой половине XIX века было много неразберихи и эта обстановка еще больше осложнилась в связи с введением понятия "эквивалентный вес", то долгое время формула воды записывалась в самых различных вариантах: то как HO, то как H 2 O и даже H 2 O 2 . Об этом писал Д.И. Менделеев: "В 50-х годах одни принимали O=8, другие O=16, если H=1. Вода для первых была HO, перекись водорода HO 2 , для вторых, как ныне, вода H 2 O, перекись водорода H 2 O 2 или HO. Смута, сбивчивость господствовали...".

После Международного конгресса химиков в Карлсруэ, состоявшегося в 1860 году, удалось внести ясность в некоторые вопросы, сыгравшие заметную роль в дальнейшем развитии атомно-молекулярной теории, а следовательно, и в правильном толковании атомарного состава воды. Была установлена единая химическая символика.

Экспериментальные исследования, выполненные в XIX веке весовыми и объемными методами, в конце концов убедительно показали, что вода как химическое соединение может быть выражена формулой H 2 O.

Как уже известно, молекула воды довольно "однобока" - оба атома водорода примыкают к кислороду с одной стороны. Интересно, что эта чрезвычайно важная особенность молекулы воды была установлена чисто умозрительно задолго до эпохи спектроскопических исследований английским профессором Д. Берналом. Он исходил из того, что вода обладает весьма сильным электрическим моментом (в то время, в 1932 г., это было известно). Проще всего, конечно, молекулу воды "сконструировать", расположив все входящие в нее атомы по прямой линия, т.е. H-O-H. "Однако, - пишет Бернал, - водяная молекула подобным образом построена быть не может, ибо при такой структуре молекула, содержащая два положительных атома водорода и отрицательный атом кислорода, была бы электрически нейтральной, не обладала бы определенной направленностью… электрический момент может быть только, если оба атома водорода примыкают к кислороду с одной и той же стороны".

Общеизвестна формула основы жизни - воды. Её молекула состоит из двух атомов водорода и одного кислорода, что записывается как H2O. Если же кислорода будет в два раза больше, то получится совсем другое вещество - H2O2. Что это и чем полученное вещество будет отличаться от своей «родственницы» воды?

H2O2 - что это за вещество?

Остановимся на нем подробнее. H2O2 - формула перекиси водорода, Да, той самой, которой обрабатывают царапины, белой. Пероксид водорода H2O2 - научное.

Для дезинфекции используют трехпроцентный раствор перекиси. В чистом или концентрированном виде она вызывает химические ожоги кожи. Тридцатипроцентный раствор перекиси иначе называют пергидроль; раньше его применяли в парикмахерских для обесцвечивания волос. Обожженная им кожа также становится белой.

Химические свойства Н2О2

Перекись водорода представляет собой жидкость без цвета и с «металлическим» привкусом. Является хорошим растворителем и сама легко растворяется в воде, эфире, спиртах.

Трёх- и шестипроцентные растворы перекиси обычно готовят, разбавляя тридцатипроцентный раствор. При хранении концентрированного Н2О2 происходит разложение вещества с выделением кислорода, поэтому в плотно закупоренных емкостях его хранить не следует во избежание взрыва. С уменьшением концентрации пероксида, повышается его устойчивость. Также для замедления разложения Н2О2 можно добавлять в него различные вещества, например, фосфорную или салициловую кислоту. Для хранения растворов сильной концентрации (более 90 процентов) в перекись добавляют пирофосфат натрия, который стабилизирует состояние вещества, а также используют сосуды из алюминия.

Н2О2 в химических реакциях может быть как окислителем, так и восстановителем. Однако чаще пероксид проявляет окислительные свойства. Перекись принято считать кислотой, но очень слабой; соли перекиси водорода называют пероксидами.

как метод получения кислорода

Реакция разложения Н2О2 происходит при воздействии на вещество высокой температуры (более 150 градусов Цельсия). В результате образуются вода и кислород.

Формула реакции - 2 Н2О2 + t -> 2 Н2О + О2

Степень окисления Н в Н 2 О 2 и Н 2 О = +1.
Степень окисления О: в Н 2 О 2 = -1, в Н 2 О = -2, в О 2 = 0
2 О -1 - 2е -> О2 0

О -1 + е -> О -2
2 Н2О2 = 2 Н2О + О2

Разложение перекиси водорода может произойти и при комнатной температуре, если использовать катализатор (химическое вещество, ускоряющее реакцию).

В лабораториях одним из методов получения кислорода, наряду с разложением бертолетовой соли или марганцовки, является реакция разложения перекиси. В таком случае в качестве катализатора используют оксид марганца (IV). Другие вещества, ускоряющие разложение H2O2, - медь, платина, гидроксид натрия.

История открытия перекиси

Первые шаги к открытию перекиси были сделаны в 1790 году немцем Александром Гумбольдтом, когда он обнаружил превращения оксида бария в пероксид при нагревании. Тот процесс сопровождался поглощением кислорода из воздуха. Через двенадцать лет учеными Тенаром и Гей-Люссаком был проведен опыт по сжиганию щелочных металлов с избытком кислорода, в результате чего был получен пероксид натрия. Но пероксид водорода был получен позже, лишь в 1818 году, когда Луи Тенар изучал воздействие кислот на металлы; для их устойчивого взаимодействия было необходимо низкое количество кислорода. Проводя подтверждающий опыт с перекисью бария и серной кислотой, ученый добавил к ним воду, хлористый водород и лёд. Через непродолжительное время, Тенар обнаружил на стенках емкости с пероксидом бария небольшие застывшие капли. Стало ясно, что это H2O2. Тогда дали полученному H2O2 название «окисленная вода». Это и была перекись водорода - бесцветная, ничем не пахнущая, трудноиспаримая жидкость, хорошо растворяющая другие вещества. Результат взаимодействия H2O2 и H2O2 - реакция диссоциации, перекись растворима в воде.

Интересный факт - быстро обнаружились свойства нового вещества, позволяющие использовать его в реставрационных работах. Сам Тенар при помощи пероксида отреставрировал картину Рафаэля, потемневшую от времени.

Перекись водорода в XX веке

После тщательного изучения полученного вещества его стали производить в промышленных масштабах. В начале двадцатого века ввели электрохимическую технологию производства перекиси, основанную на процессе электролиза. Но срок годности полученного таким методом вещества был невелик, около пары недель. Чистая перекись нестабильна, и по большей части её выпускали в тридцатипроцентной концентрации для отбеливания ткани и в трёх- или шестипроцентной - для бытовых нужд.

Учёные фашистской Германии использовали пероксид для создания ракетного двигателя на жидком топливе, который использовался для оборонных нужд во Второй Мировой войне. В результате взаимодействия Н2О2 и метанола/гидразина, получалось мощное топливо, на котором самолет достигал скорости более 950 км/ч.

Где применяется Н2О2 сейчас?

  • в медицине - для обработки ран;
  • в целлюлозно-бумажной промышленности используются отбеливающие свойства вещества;
  • в текстильной промышленности перекисью отбеливают натуральные и синтетические ткани, меха, шерсть;
  • как ракетное топливо или его окислитель;
  • в химии - для получения кислорода, как пенообразователь для производства пористых материалов, как катализатор или гидрирующий агент;
  • для производства дезинфицирующих или чистящих средств, отбеливателей;
  • для обесцвечивания волос (это устаревший метод, так как волосы сильно повреждаются пероксидом);

Перекись водорода можно успешно применять для решения разных бытовых задач. Но использовать в этих целях можно лишь трёхпроцентную перекись водорода. Вот некоторые способы:

  • Для очистки поверхностей нужно залить перекись в сосуд пульверизатором и разбрызгивать на загрязненные места.
  • Для дезинфекции предметов их нужно протереть неразбавленным раствором Н2О2. Это поможет очистить их от вредных микроорганизмов. Губки для мытья можно замочить в воде с перекисью (пропорция 1:1).
  • Для отбеливания тканей при стирке белых вещей добавляют стакан пероксида. Можно также выполоскать белые ткани в воде, смешанной со стаканом Н2О2. Этот способ возвращает белизну, предохраняет ткани от пожелтения и помогает удалить трудновыводимые пятна.
  • Для борьбы с плесенью и грибком следует смешать в емкости с пульверизатором перекись и воду в пропорции 1:2. Полученную смесь распылять на зараженные поверхности и через 10 минут очищать их при помощи щётки или губки.
  • Обновить потемневшую затирку в кафельной плитке можно, распылив пероксид на нужные участки. Через 30 минут нужно тщательно потереть их жесткой щёткой.
  • Для мытья посуды полстакана Н2О2 добавить в полный таз с водой (или раковину с закрытым сливом). Промытые в таком растворе чашки и тарелки будут сиять чистотой.
  • Чтобы очистить зубную щётку, нужно опустить её в неразведенный трёхпроцентный раствор перекиси. Затем промыть под сильной струей воды. Этот способ хорошо дезинфицирует предмет гигиены.
  • Чтобы продезинфицировать купленные овощи и фрукты, следует распылить на них раствор 1 части перекиси и 1 части воды, после чего тщательно промыть их водой (можно холодной).
  • На дачном участке при помощи Н2О2 можно бороться с болезнями растений. Нужно опрыскивать их раствором перекиси или замочить семена незадолго до посадки в 4,5 литрах воды, смешанной с 30 мл сорокапроцентной перекиси водорода.
  • Для оживления аквариумных рыбок, если они отравились аммиаком, задохнулись при отключении аэрации или по другой причине, можно попробовать поместить их в воду с перекисью водорода. Нужно смешать трёхпроцентную перекись с водой из расчёта 30 мл на 100 литров и поместить в полученную смесь бездыханных рыб на 15-20 минут. Если они не оживут за это время, значит, средство не помогло.

Даже в результате активного встряхивания бутылки с водой в ней образуется некоторое количество пероксида, так как вода при этом действии насыщается кислородом.

В свежих фруктах и овощах Н2О2 также содержится, пока они не подвергнутся термической обработке. При нагреве, варке, обжарке и других процессах с сопутствующей высокой температурой уничтожается большое количество кислорода. Именно поэтому прошедшие кулинарную обработку продукты считаются не такими полезными, хотя какое-то количество витаминов в них остается. Свежевыжатые соки или кислородные коктейли, подаваемые в санаториях, полезны по той же причине - из-за насыщения кислородом, который дает организму новые силы и очищает его.

Опасность перекиси при употреблении внутрь

После вышесказанного может показаться, что перекись можно специально принимать внутрь, и от этого будет польза организму. Но это совсем не так. В воде или соках соединение содержится в минимальных количествах и тесно связано с другими веществами. Прием же «ненатуральной» перекиси водорода внутрь (а вся перекись, купленная в магазине или произведенная в результате химических опытов самостоятельно, никак не может считаться натуральной, к тому же обладает слишком высокой концентрацией по сравнению с природной) может привести к опасным для жизни и здоровья последствиям. Чтобы понять - почему, нужно вновь обратиться к химии.

Как уже упомянуто, при некоторых условиях пероксид водорода разрушается и выделяет кислород, являющийся активным окислителем. может произойти при столкновении Н2О2 с пероксидазой - внутриклеточным ферментом. В основе использования перекиси для дезинфекции положены именно её окислительные свойства. Так, когда рану обрабатывают Н2О2 - выделяющийся кислород уничтожает живые патогенные микроорганизмы, попавшие в нее. Такое же действие она оказывает и на другие живые клетки. Если обработать неповрежденную кожу пероксидом, а потом протереть место обработки спиртом, почувствуется жжение, что подтверждает наличие микроскопических повреждений после перекиси. Но при внешнем применении перекиси низкой концентрации какого-то заметного вреда организму не будет.

Другое дело, если её пытаться принимать внутрь. То вещество, которое способно повреждать даже сравнительно толстую кожу снаружи, попадает на слизистые оболочки пищеварительного тракта. То есть происходят химические мини-ожоги. Разумеется, выделяющийся окислитель - кислород - может заодно убить и вредные микробы. Но этот же процесс произойдет и с клетками пищевого тракта. Если ожоги в результате действия окислителя будут повторяться, то возможна атрофия слизистых оболочек, а это - первый шаг на пути к раку. Гибель клеток кишечника приводит к невозможности организма усваивать питательные вещества, этим объясняется, например, снижение веса и исчезновение запоров у некоторых людей, практикующих «лечение» перекисью.

Отдельно нужно сказать о таком методе употребления перекиси, как внутривенные инъекции. Даже если по какой-то причине их назначил врач (оправдано это может быть лишь при заражении крови, когда других подходящих лекарств в наличии нет), то под медицинским наблюдением и со строгим расчетом дозировок риски все-таки есть. Но в такой экстремальной ситуации это будет шансом на выздоровление. Самому же назначать себе уколы перекиси водорода ни в коем случае нельзя. Н2О2 представляет большую опасность для клеток крови - эритроцитов и тромбоцитов, так как при попадании в кровеносное русло разрушает их. К тому же, может произойти смертельно опасная закупорка сосудов высвободившимся кислородом - газовая эмболия.

Меры безопасности в обращении с Н2О2

  • Хранить в недоступном для детей и недееспособных лиц месте. Отсутствие запаха и выраженного вкуса делает перекись особенно опасной для них, так как могут быть приняты большие дозы. При попадании внутрь раствора, последствия употребления могут быть непредсказуемыми. Необходимо незамедлительно обратиться к врачу.
  • Растворы перекиси концентрацией более трёх процентов вызывают ожоги при попадании на кожу. Место ожога нужно промыть большим количеством воды.

  • Не допускать попадания раствора пероксида в глаза, так как образуется их отек, покраснение, раздражение, иногда болевые ощущения. Первая помощь до обращения к врачу - обильное промывание глаз водой.
  • Хранить вещество так, чтобы было понятно, что это - H2O2, то есть в емкости с наклейкой во избежание случайного применения не по назначению.
  • Условия хранения, продлевающие его срок, - темное, сухое, прохладное место.
  • Нельзя смешивать пероксид водорода с любыми жидкостями, кроме чистой воды, в том числе и с хлорированной водой из-под крана.
  • Все вышесказанное применимо не только к Н2О2, но и ко всем содержащим его препаратам.

Формулы для ковалентных связей в корне отличаются от формул для ионных связей. Дело в том, что ковалентные соединения могут образовываться самыми разными способами, поэтому в результате реакции возможно появление различных соединений.

1. Эмпирическая формула

В эмпирической формуле указываются элементы, из которых состоит молекула, с наименьшим целочисленными соотношениями.

Например, C 2 H 6 O - соединение содержит два атома углерода, шесть атомов водорода и один атом кислорода.

2. Молекулярная формула

Молекулярная формула указывает из каких атомов состоит соединение и в каких количествах эти атомы в нем находятся.

Например, для соединения C 2 H 6 O молекулярными формулами могут быть: C 4 H 12 O 2 ; C 6 H 18 O 3 ...

Для полного описания ковалентного соединения молекулярной формулы недостаточно:

Как видим, оба соединения имеют одинаковую молекулярную формулу - C 2 H 6 O, но являются совершенно разными веществами:

  • диметиловый эфир применяется в холодильных установках;
  • этиловый спирт - основа алкогольных напитков.

3. Структурная формула

Структурная формула служит для точного определения ковалентного соединения, т.к., кроме элементов в соединении и количества атомов, показывает еще и схему связей соединения.

В качестве структурной формулы используют электронно-точечную формулу и формулу Льюиса .

4. Структурная формула для воды (H 2 O)

Рассмотрим порядок построение структурной формулы на примере молекулы воды.

I Строим каркас соединения

Атомы соединения располагаются вокруг центрального атома. В качестве центральных обычно выступают атомы: углерода, кремния, азота, фосфора, кислорода, серы.

II Находим сумму валентных электронов всех атомов соединения

Для воды: H 2 O = (2·1 + 6) = 8

В атоме водорода один валентный электрон, в атоме кислорода - 6. Поскольку в соединении присутствует два атома водорода, то общее число валентных электронов молекулы воды будет равно 8.

III Определяем количество ковалентных связей в молекуле воды

Определяем по формуле: S = N - A , где

S - количество электронов, совместно используемых в молекуле;

N - сумма валентных электронов, соответствующих завершенному внешнему энергетическому уровню атомов в соединении:

N = 2 - для атома водорода;

N = 8 - для атомов остальных элементов

A - сумма валентных электронов всех атомов в соединении.

N = 2·2 + 8 = 12

A = 2·1 +6 = 8

S = 12 - 8 = 4

В молекуле воды совместно используемых электронов - 4. Поскольку ковалентная связь состоит из пары электронов, то получаем две ковалентные связи.

IV Распределяем совместные электроны

Между центральным атомом и атомами, которые окружают его, должна быть хотя бы одна связь. Для молекулы воды таких связей будет по два для каждого атома водорода:

V Распределяем оставшиеся электроны

Из восьми валентных электронов четыре уже распределены. Куда "девать" оставшиеся четыре электрона?

Каждый атом в соединении должен иметь полный октет электронов. Для водорода - это два электрона; для кислорода - 8.

Совместно используемые электроны называются связывающими .

Электронно-точечная формула и формула Льюиса наглядно описывают строение ковалентной связи, но громоздки и занимают много места. Этих недостатков можно избежать применяя сжатую структурную формулу , в которой указывается только порядок "следования" связей.

Пример сжатой структурной формулы:

  • диметиловый эфир - CH 3 OCH 3
  • этиловый спирт - C 2 H 5 OH