Действия для определения горизонтальной асимптоты. Как найти асимптоты графика функции? Сколько асимптот может быть у графика функции

Асимптотой графика функции y = f(x) называется прямая, обладающая тем свойством, что расстояние от точки (х, f(x)) до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

На рисунке 3.10. приведены графические примеры вертикальной , горизонтальных и наклонной асимптот.

Нахождение асимптот графика основано на следующих трех теоремах.

Теорема о вертикальной асимптоте. Пусть функция у = f(х) определена в некоторой окрестности точки x 0 (исключая, возможно, саму эту точку) и хотя бы один из односторонних пределов функции равен бесконечности, т.е. Тогда прямая x = x 0 является вертикальной асимптотой графика функции у = f(х).

Очевидно, что прямая х = х 0 не может быть вертикальной асимптотой, если функция непрерывна в точке х 0 , так как в этом случае . Следовательно, вертикальные асимптоты следует искать в точках разрыва функции или на концах ее области определения.

Теорема о горизонтальной асимптоте. Пусть функция у = f(х) определена при достаточно больших х и существует конечный предел функции . Тогда прямая у = b есть горизонтальная асимптота графика функции.

Замечание. Если конечен только один из пределов , то функция имеет соответственно левостороннюю либо правостороннюю горизонтальную асимптоту.

В том случае, если , функция может иметь наклонную асимптоту.

Теорема о наклонной асимптоте. Пусть функция у = f(х) определена при достаточно больших х и существуют конечные пределы . Тогда прямая y = kx + b является наклонной асимптотой графика функции.

Без доказательства.

Наклонная асимптота, так же, как и горизонтальная, может быть правосторонней или левосторонней, если в базе соответствующих пределов стоит бесконечность определенного знака.

Исследование функций и построение их графиков обычно включает следующие этапы:

1. Найти область определения функции.

2. Исследовать функцию на четность-нечетность.

3. Найти вертикальные асимптоты, исследовав точки разрыва и поведение функции на границах области определения, если они конечны.

4. Найти горизонтальные или наклонные асимптоты, исследовав поведение функции в бесконечности.

5. Найти экстремумы и интервалы монотонности функции.

6. Найти интервалы выпуклости функции и точки перегиба.

7. Найти точки пересечения с осями координат и, возможно, некоторые дополнительные точки, уточняющие график.

Дифференциал функции

Можно доказать, что если функция имеет при некоторой базе предел, равный конечному числу, то ее можно представить в виде суммы этого числа и бесконечно малой величины при той же базе (и наоборот): .

Применим это теорему к дифференцируемой функции: .


Таким образом, приращение функции Dу состоит из двух слагаемых: 1) линейного относительно Dх, т.е. f `(x)Dх; 2) нелинейного относительно Dх, т.е. a(Dx)Dх. При этом, так как , это второе слагаемое представляет собой бесконечно малую более высокого порядка, чем Dх (при стремлении Dх к нулю оно стремится к нулю еще быстрее).

Дифференциалом функции называется главная, линейная относительно Dх часть приращения функции, равная произведению производной на приращение независимой переменной dy = f `(x)Dх.

Найдем дифференциал функции у = х.

Так как dy = f `(x)Dх = x`Dх = Dх, то dx = Dх, т.е. дифференциал независимой переменной равен приращению этой переменной.

Поэтому формулу для дифференциала функции можно записать в виде dy = f `(x)dх. Именно поэтому одно из обозначений производной представляет собой дробь dy/dх.

Геометрический смысл дифференциала проиллюстрирован
рисунком 3.11. Возьмем на графике функции y = f(x) произвольную точку М(х, у). Дадим аргументу х приращение Dх. Тогда функция y = f(x) получит приращение Dy = f(x + Dх) - f(x). Проведем касательную к графику функции в точке М, которая образует угол a с положительным направлением оси абсцисс, т.е. f `(x) = tg a. Из прямоугольного треугольника MKN
KN = MN*tg a = Dх*tg a = f `(x)Dх = dy.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции в данной точке, когда х получает приращение Dх.

Свойства дифференциала в основном аналогичны свойствам производной:

3. d(u ± v) = du ± dv.

4. d(uv) = v du + u dv.

5. d(u/v) = (v du - u dv)/v 2 .

Однако, существует важное свойство дифференциала функции, которым не обладает ее производная – это инвариантность формы дифференциала .

Из определения дифференциала для функции y = f(x) дифференциал dy = f `(x)dх. Если эта функция y является сложной, т.е. y = f(u), где u = j(х), то y = f и f `(x) = f `(u)*u`. Тогда dy = f `(u)*u`dх. Но для функции
u = j(х) дифференциал du = u`dх. Отсюда dy = f `(u)*du.

Сравнивая между собой равенства dy = f `(x)dх и dy = f `(u)*du, убедимся, что формула дифференциала не изменяется, если вместо функции от независимой переменной х рассматривать функцию от зависимой переменной u. Это свойство дифференциала и получило название инвариантности (т.е. неизменности) формы (или формулы) дифференциала.

Однако в этих двух формулах все же есть различие: в первой из них дифференциал независимой переменной равен приращению этой переменной, т.е. dx = Dx, а во в торой дифференциал функции du есть лишь линейная часть приращения этой функции Du и только при малых Dх du » Du.

  1. Понятие асимптот

Одним из важных этапов построения графиков функций является поиск асимптот. С асимптотами мы встречались неоднократно: при построении графиков функций , y=tgx , y=сtgx . Мы определяли их как линии, к которым «стремится» график функции, но никогда их не пересечет. Пришло время дать точное определение асимптот.

Асимптоты бывают трех видов: вертикальная, горизонтальная и наклонная. На чертеже асимптоты принято обозначать пунктирными линиями.

Рассмотрим следующий искусственно составленный график функции (рис. 16.1), на примере которого хорошо видны все виды асимптот:

Дадим определение каждому виду асимптот:

1. Прямая х=а называется вертикальной асимптотой функции , если .

2. Прямая у=с называется горизонтальной асимптотой функции , если .

3. Прямая у=kx+b называется наклонной асимптотой функции , если .

Геометрически определение наклонной асимптоты означает, что при →∞ график функции сколь угодно близко подходит к прямой у=kx+b , т.е. они практически совпадают. Разность практически одинаковых выражений стремится к нулю.

Отметим, что горизонтальные и наклонные асимптоты рассматриваются только при условии →∞. Иногда их различают на горизонтальные и наклонные асимптоты при →+∞ и →-∞.

  1. Алгоритм поиска асимптот

Для поиска асимптот можно использовать следующий алгоритм:

Вертикальных асимптот может быть одна, несколько или не быть совсем.

  • Если с – число, то у=с – горизонтальная асимптота;
  • Если с – бесконечность, то горизонтальных асимптот нет.

Если функция представляет собой отношение двух многочленов, то при наличии у функции горизонтальных асимптот наклонные асимптоты искать не будем – их нет.

Рассмотрим примеры нахождения асимптот функции:

Пример 16.1. Найдите асимптоты кривой .

Решение х -1≠0; х ≠1.

Проверим, является ли прямая х= 1 вертикальной асимптотой. Для этого вычислим предел функции в точке х= 1: .



х= 1 - вертикальная асимптота.

с = .

с = = . Т.к. с =2 (число), то у=2 – горизонтальная асимптота.

Так как функция представляет собой отношение многочленов, то при наличии горизонтальных асимптот утверждаем, что наклонных асимптот нет.

х= 1 и горизонтальную асимптоту у=2. Для наглядности график данной функции представлен на рис. 16.2.

Пример 16.2 . Найдите асимптоты кривой .

Решение . 1. Найдем область определения функции: х -2≠0; х ≠2.

Проверим, является ли прямая х= 2 вертикальной асимптотой. Для этого вычислим предел функции в точке х= 2: .

Получили, что , следовательно, х= 2 - вертикальная асимптота.

2. Для поиска горизонтальных асимптот находим : с = .

Поскольку в пределе фигурирует неопределенность , воспользуемся правилом Лопиталя: с = = . Т.к. с – бесконечность, то горизонтальных асимптот нет.

3. Для поиска наклонных асимптот находим :

Получили неопределенность вида , воспользуемся правилом Лопиталя: = =1.Итак, 1. Найдем b по формуле: .

b= = =

Получили, что b= 2. Тогда у=kx+b – наклонная асимптота. В нашем случае она имеет вид: у=x+2.

Рис. 16.3
Таким образом, данная функция имеет вертикальную асимптоту х= 2 и наклонную асимптоту у=x+2. Для наглядности график функции представлен на рис. 16.3.

Контрольные вопросы:

Лекция 17. ОБЩАЯ СХЕМА ИССЛЕДОВАНИЯ ФУНКЦИИ И ПОСТРОЕНИЯ ГРАФИКА

В данной лекции мы подведем итог всему ранее изученному материалу. Конечная цель нашего долгого пути – уметь исследовать любую аналитически заданную функцию и строить ее график. Важными звеньями нашего исследования будут исследование функции на экстремумы, определение интервалов монотонности, выпуклости и вогнутости графика, поиск точек перегиба, асимптот графика функции.

С учетом всех вышеперечисленных аспектов приведем схему исследования функции и построения графика .

1. Найти область определения функции.

2. Исследовать функцию на четность-нечетность:

· если , то функция четная (график четной функции симметричен относительно оси Оу );

· если , то функция нечетная (график нечетной функции симметричен относительно начала координат);

· в противном случае функция ни четная, ни нечетная.

3. Исследовать функцию на периодичность (среди изучаемых нами функций периодическими могут быть только тригонометрические функции).

4. Найти точки пересечения графика функции с осями координат:

· Ох : у =0 (решаем уравнение лишь в том случае, если можем использовать известные нам методы);

· Оу : х =0.

5. Найти первую производную функции и критические точки первого рода.

6. Найти интервалы монотонности и экстремумы функции.

7. Найти вторую производную функции и критические точки второго рода.

8. Найти интервалы выпуклости-вогнутости графика функции и точки перегиба.

9. Найти асимптоты графика функции.

10. Построить график функции. При построении следует учесть случаи возможного расположения графика вблизи асимптот :

11. При необходимости выбрать контрольные точки для более точного построения.

Рассмотрим схему исследования функции и построения ее графика на конкретных примерах:

Пример 17.1 . Постройте график функции .

Решение . 1. Данная функция определена на всей числовой прямой за исключением х =3, т.к. в этой точке знаменатель обращается в ноль.

2. Для определения четности и нечетности функции найдем :

Видим, что и , следовательно, функция ни четная, ни нечетная.

3. Функция непериодическая.

4. Найдем точки пересечения с осями координат. Для нахождения точки пересечения с осью Ох примем у =0. Получим уравнение: . Итак, точка (0; 0) – точка пересечения с осями координат.

5. Найдем производную функции по правилу дифференцирования дроби: = = = = .

Для нахождения критических точек найдем точки, в которых производная функции равна 0 или не существует.

Если =0, следовательно, . Произведение тогда равно 0, когда хотя бы один из множителей равен 0: или .

х -3) 2 равен 0, т.е. не существует при х =3.

Итак, функция имеет три критические точки первого рода: ; ; .

6. На числовой оси отметим критические точки первого рода, причем точку отмечаем выколотой точкой, т.к. в ней функция не определена.

Расставляем знаки производной = на каждом промежутке:

т.min
т.max

На промежутках, где , исходная функция возрастает (при (-∞;0] ), где - убывает (при ).

Точка х =0 является точкой максимума функции. Для нахождения максимума функции найдем значение функции в точке 0: .

Точка х =6 является точкой минимума функции. Для нахождения минимума функции найдем значение функции в точке 6: .

Результаты исследований можно занести в таблицу. Число строк в таблице фиксировано и равно четырем, а число столбцов зависит от исследуемой функции. В ячейки первой строки последовательно заносят интервалы, на которые критические точки разбивают область определения функции, включая сами критические точки. Во избежание ошибок при построении точки, не принадлежащие области определения, можно в таблицу не включать.

Во второй строке таблицы расставляются знаки производной на каждом из рассматриваемых промежутков и значение производной в критических точках. В соответствии со знаками производной функции в третьей строке отмечаются промежутки возрастания, убывания, экстремумы функции.

Последняя строка служит для обозначения максимума и минимума функции.

х (-∞;0) (0;3) (3;6) (6;+ ∞)
+ - - +
f(x)
Выводы max min

7. Найдем вторую производную функции как производную от первой производной: = =

Вынесем в числителе х -3 за скобки и выполним сокращение:

Приведем в числителе подобные слагаемые: .

Найдем критические точки второго рода: точки, в которых вторая производная функции равна нулю или не существует.

0, если =0. Данная дробь не может равняться нулю, следовательно, точек, в которых вторая производная функции равна нулю, нет.

Не существует, если знаменатель (х -3) 3 равен 0, т.е. не существует при х =3. :Ох , Оу , начало отсчета, единицы измерения по каждой оси.

Прежде чем строить график функции, нужно:

· провести асимптоты пунктирными линиями;

· отметить точки пересечения с осями координат;

Рис. 17.1
отметить максимум и минимум функции, причем рекомендуется прямо на чертеже обозначить максимум и минимум функции дугами: k или ;

· пользуясь полученными данными о промежутках возрастания, убывания, выпуклости и вогнутости, построить график функции. Ветви графика должны «стремиться» к асимптотам, но их не пересекать.

· проверить, соответствует ли график функции проведенному исследованию: если функция четная или нечетная, то соблюдена ли симметрия; соответствуют ли теоретически найденным промежутки возрастания и убывания, выпуклости и вогнутости, точки перегиба.

11. Для более точного построения можно выбрать несколько контрольных точек. Например, найдем значения функции в точках -2 и 7:

Корректируем график с учетом контрольных точек.

Контрольные вопросы:

  1. Каков алгоритм построения графика функции?
  2. Может ли функция иметь экстремум в точках, не принадлежащих области определении?

ГЛАВА 3. 3. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ

Асимптоты графика функции

Призрак асимптоты давно бродил по сайту чтобы, наконец, материализоваться в отдельно взятой статье и привести в особый восторг читателей, озадаченных полным исследованием функции . Нахождение асимптот графика – одна из немногих частей указанного задания, которая освещается в школьном курсе лишь в обзорном порядке, поскольку события вращаются вокруг вычисления пределов функций , а они относятся всё-таки к высшей математике. Посетители, слабо разбирающиеся в математическом анализе, намёк, думаю, понятен;-) …стоп-стоп, вы куда? Пределы – это легко!

Примеры асимптот встретились сразу же на первом уроке о графиках элементарных функций , и сейчас тема получает детальное рассмотрение.

Итак, что такое асимптота?

Представьте переменную точку , которая «ездит» по графику функции. Асимптота – это прямая , к которой неограниченно близко приближается график функции при удалении его переменной точки в бесконечность.

Примечание : определение содержательно, если вам необходима формулировка в обозначениях математического анализа, пожалуйста, обратитесь к учебнику.

На плоскости асимптоты классифицируют по их естественному расположению:

1) Вертикальные асимптоты , которые задаются уравнением вида , где «альфа» – действительное число. Популярная представительница определяет саму ось ординат,
с приступом лёгкой тошноты вспоминаем гиперболу .

2) Наклонные асимптоты традиционно записываются уравнением прямой с угловым коэффициентом . Иногда отдельной группой выделяют частный случай – горизонтальные асимптоты . Например, та же гипербола с асимптотой .

Резво пошло-поехало, ударим по теме короткой автоматной очередью:

Сколько асимптот может быть у графика функции?

Ни одной, одна, две, три,… или бесконечно много. За примерами далеко ходить не будем, вспомним элементарные функции . Парабола, кубическая парабола, синусоида вовсе не имеют асимптот. График экспоненциальной, логарифмической функции обладает единственной асимптотой. У арктангенса, арккотангенса их две, а у тангенса, котангенса – бесконечно много. Не редкость, когда график укомплектован и горизонтальными и вертикальными асимптотами. Гипербола, will always love you.

Что значит ?

Вертикальные асимптоты графика функции

Вертикальная асимптота графика, как правило, находится в точке бесконечного разрыва функции. Всё просто: если в точке функция терпит бесконечный разрыв, то прямая, заданная уравнением является вертикальной асимптотой графика.

Примечание : обратите внимание, что запись используется для обозначения двух совершенно разных понятий. Точка подразумевается или уравнение прямой – зависит от контекста.

Таким образом, чтобы установить наличие вертикальной асимптоты в точке достаточно показать, что хотя бы один из односторонних пределов бесконечен. Чаще всего это точка, где знаменатель функции равен нулю. По существу, мы уже находили вертикальные асимптоты в последних примерах урока о непрерывности функции . Но в ряде случаев существует только один односторонний предел, и, если он бесконечен, то снова – любите и жалуйте вертикальную асимптоту. Простейшая иллюстрация: и ось ординат (см. Графики и свойства элементарных функций ).

Из вышесказанного также следует очевидный факт: если функция непрерывна на , то вертикальные асимптоты отсутствуют . На ум почему-то пришла парабола. Действительно, где тут «воткнёшь» прямую? …да… понимаю… последователи дядюшки Фрейда забились в истерике =)

Обратное утверждение в общем случае неверно: так, функция не определена на всей числовой прямой, однако совершенно обделена асимптотами.

Наклонные асимптоты графика функции

Наклонные (как частный случай – горизонтальные) асимптоты могут нарисоваться, если аргумент функции стремится к «плюс бесконечности» или к «минус бесконечности». Поэтому график функции не может иметь больше двух наклонных асимптот . Например, график экспоненциальной функции обладает единственной горизонтальной асимптотой при , а график арктангенса при – двумя такими асимптотами, причём различными.

Когда график и там и там сближается с единственной наклонной асимптотой, то «бесконечности» принято объединять под единой записью . Например, …правильно догадались: .

Общее практическое правило :

Если существуют два конечных предела , то прямая является наклонной асимптотой графика функции при . Если хотя бы один из перечисленных пределов бесконечен, то наклонная асимптота отсутствует.

Примечание : формулы остаются справедливыми, если «икс» стремится только к «плюс бесконечности» или только к «минус бесконечности».

Покажем, что у параболы нет наклонных асимптот:

Предел бесконечен, значит, наклонная асимптота отсутствует. Заметьте, что в нахождении предела необходимость отпала, поскольку ответ уже получен.

Примечание : если у вас возникли (или возникнут) трудности с пониманием знаков «плюс-минус», «минус-плюс», пожалуйста, посмотрите справку в начале урока
о бесконечно малых функциях , где я рассказал, как правильно интерпретировать данные знаки.

Очевидно, что у любой квадратичной, кубической функции, многочлена 4-й и высших степеней также нет наклонных асимптот.

А теперь убедимся, что при у графика тоже нет наклонной асимптоты. Для раскрытия неопределённости используем правило Лопиталя :
, что и требовалось проверить.

При функция неограниченно растёт, однако не существует такой прямой, к которой бы её график приближался бесконечно близко .

Переходим к практической части урока:

Как найти асимптоты графика функции?

Именно так формулируется типовое задание, и оно предполагает нахождение ВСЕХ асимптот графика (вертикальных, наклонных/горизонтальных). Хотя, если быть более точным в постановке вопроса – речь идёт об исследовании на наличие асимптот (ведь таковых может и вовсе не оказаться). Начнём с чего-нибудь простого:

Пример 1

Найти асимптоты графика функции

Решение удобно разбить на два пункта:

1) Сначала проверяем, есть ли вертикальные асимптоты. Знаменатель обращается в ноль при , и сразу понятно, что в данной точке функция терпит бесконечный разрыв , а прямая, заданная уравнением , является вертикальной асимптотой графика функции . Но, прежде чем оформить такой вывод, необходимо найти односторонние пределы:

Напоминаю технику вычислений, на которой я подобно останавливался в статье Непрерывность функции. Точки разрыва . В выражение под знаком предела вместо «икса» подставляем . В числителе ничего интересного:
.

А вот в знаменателе получается бесконечно малое отрицательное число :
, оно и определяет судьбу предела.

Левосторонний предел бесконечный, и, в принципе уже можно вынести вердикт о наличии вертикальной асимптоты. Но односторонние пределы нужны не только для этого – они ПОМОГАЮТ ПОНЯТЬ, КАК расположен график функции и построить его КОРРЕКТНО . Поэтому обязательно вычислим и правосторонний предел:

Вывод : односторонние пределы бесконечны, значит, прямая является вертикальной асимптотой графика функции при .

Первый предел конечен , значит, необходимо «продолжить разговор» и найти второй предел:

Второй предел тоже конечен .

Таким образом, наша асимптота:

Вывод : прямая, заданная уравнением является горизонтальной асимптотой графика функции при .

Для нахождения горизонтальной асимптоты
можно пользоваться упрощенной формулой :

Если существует конечный предел , то прямая является горизонтальной асимптотой графика функции при .

Нетрудно заметить, что числитель и знаменатель функции одного порядка роста , а значит, искомый предел будет конечным:

Ответ :

По условию не нужно выполнять чертёж, но если в самом разгаре исследование функции , то на черновике сразу же делаем набросок:

Исходя из трёх найденных пределов , попытайтесь самостоятельно прикинуть, как может располагаться график функции . Совсем трудно? Найдите 5-6-7-8 точек и отметьте их на чертеже. Впрочем, график данной функции строится с помощью преобразований графика элементарной функции , и читатели, внимательно рассмотревшие Пример 21 указанной статьи легко догадаются, что это за кривая.

Пример 2

Найти асимптоты графика функции

Это пример для самостоятельного решения. Процесс, напоминаю, удобно разбить на два пункта – вертикальные асимптоты и наклонные асимптоты. В образце решения горизонтальная асимптота найдена по упрощенной схеме.

На практике чаще всего встречаются дробно-рациональные функции, и после тренировки на гиперболах усложним задание:

Пример 3

Найти асимптоты графика функции

Решение : Раз, два и готово:

1) Вертикальные асимптоты находятся в точках бесконечного разрыва , поэтому нужно проверить, обращается ли знаменатель в ноль. Решим квадратное уравнение :

Дискриминант положителен, поэтому уравнение имеет два действительных корня, и работы значительно прибавляется =)

В целях дальнейшего нахождения односторонних пределов квадратный трёхчлен удобно разложить на множители :
(для компактной записи «минус» внесли в первую скобку). Для подстраховки выполним проверку, мысленно либо на черновике раскрыв скобки.

Перепишем функцию в виде

Найдём односторонние пределы в точке :

И в точке :

Таким образом, прямые являются вертикальными асимптотами графика рассматриваемой функции.

2) Если посмотреть на функцию , то совершенно очевидно, что предел будет конечным и у нас горизонтальная асимптота. Покажем её наличие коротким способом:

Таким образом, прямая (ось абсцисс) является горизонтальной асимптотой графика данной функции.

Ответ :

Найденные пределы и асимптоты дают немало информации о графике функции. Постарайтесь мысленно представить чертёж с учётом следующих фактов:

Схематично изобразите вашу версию графика на черновике.

Конечно, найденные пределы однозначно не определяют вид графика, и возможно, вы допустите ошибку, но само упражнение окажет неоценимую помощь в ходе полного исследования функции . Правильная картинка – в конце урока.

Пример 4

Найти асимптоты графика функции

Пример 5

Найти асимптоты графика функции

Это задания для самостоятельного решения. Оба графика снова обладают горизонтальными асимптотами, которые немедленно детектируются по следующим признакам: в Примере 4 порядок роста знаменателя больше , чем порядок роста числителя, а в Примере 5 числитель и знаменатель одного порядка роста . В образце решения первая функция исследована на наличие наклонных асимптот полным путём, а вторая – через предел .

Горизонтальные асимптоты, по моему субъективному впечатлению, встречаются заметно чаще, чем те, которые «по-настоящему наклонены». Долгожданный общий случай:

Пример 6

Найти асимптоты графика функции

Решение : классика жанра:

1) Поскольку знаменатель положителен, то функция непрерывна на всей числовой прямой, и вертикальные асимптоты отсутствуют. …Хорошо ли это? Не то слово – отлично! Пункт №1 закрыт.

2) Проверим наличие наклонных асимптот:

Первый предел конечен , поэтому едем дальше. В ходе вычисления второго предела для устранения неопределённости «бесконечность минус бесконечность» приводим выражение к общему знаменателю:

Второй предел тоже конечен , следовательно, у графика рассматриваемой функции существует наклонная асимптота:

Вывод :

Таким образом, при график функции бесконечно близко приближается к прямой :

Заметьте, что он пересекает свою наклонную асимптоту в начале координат, и такие точки пересечения вполне допустимы – важно, чтобы «всё было нормально» на бесконечности (собственно, речь об асимптотах и заходит именно там).

Пример 7

Найти асимптоты графика функции

Решение : комментировать особо нечего, поэтому оформлю примерный образец чистового решения:

1) Вертикальные асимптоты. Исследуем точку .

Прямая является вертикальной асимптотой для графика при .

2) Наклонные асимптоты:

Прямая является наклонной асимптотой для графика при .

Ответ :

Найдённые односторонние пределы и асимптоты с высокой достоверностью позволяют предположить, как выглядит график данной функции. Корректный чертёж в конце урока.

Пример 8

Найти асимптоты графика функции

Это пример для самостоятельного решения, для удобства вычисления некоторых пределов можно почленно разделить числитель на знаменатель. И снова, анализируя полученные результаты, постарайтесь начертить график данной функции.

Очевидно, что обладателями «настоящих» наклонных асимптот являются графики тех дробно-рациональных функций, у которых старшая степень числителя на единицу больше старшей степени знаменателя. Если больше – наклонной асимптоты уже не будет (например, ).

Но в жизни происходят и другие чудеса:

Пример 9


Пример 11

Исследовать график функции на наличие асимптот

Решение : очевидно, что , поэтому рассматриваем только правую полуплоскость, где есть график функции.

Таким образом, прямая (ось ординат) является вертикальной асимптотой для графика функции при .

2) Исследование на наклонную асимптоту можно провести по полной схеме, но в статье Правила Лопиталя мы выяснили, что линейная функция более высокого порядка роста, чем логарифмическая, следовательно: (см. Пример 1 того же урока).

Вывод: ось абсцисс является горизонтальной асимптотой графика функции при .

Ответ :
, если ;
, если .

Чертёж для наглядности:

Интересно, что у вроде бы похожей функции асимптот нет вообще (желающие могут это проверить).

Два заключительных примера для самостоятельного изучения:

Пример 12

Исследовать график функции на наличие асимптот

Если расстояние d от точки кривой у = f (х), имеющей бесконечную ветвь, до некоторой определенной прямой по мере удаления точки по этой кривой в бесконечность стре­мится к нулю, то прямая называется асимптотой кривой.

Различают асимптоты: 1) горизонтальные, 2) вертикальные и 3) наклонные.

1. Кривая у = f (х) имеет горизонтальную асимптоту у =b только в том случае, когда существует конечный предел функции f (х) при , и этот предел равен b , т. е. если

2. Кривая у = f (х) имеет вертикальную асимптоту х = а, если при . Для опре­деления вертикальных асимптот надо отыскать те значения аргу­мента, вблизи которых f (х) неограниченно возрастает по абсолютной величине. Если такими значениями аргумента являются а1, а2, …, то уравнения вертикальных асимптот будут

х = а1, х =а2…

3. Для определения наклонной асимптоты у = kx + b кривой у = f (х) надо найти числа k и b из формул

(следует отдельно рассматривать случаи ). Наклонные асимптоты у кривой у = f (х) существуют в том и только в том случае, когда эти пределы имеют ко­нечное значение. При определении этих пределов удобно пользоваться правилом Лопиталя.

Пример. Найти асимптоты кривой

Решение. Горизонтальных асимптот нет. Вертикальную асимптоту находим из условия

2х + 3 = 0 => х = - 3/2, при этом у
, когда
, у
, когда
. Определим наклонные асимптоты, уравнение которых имеет вид: у = kx + b

Так как k и b имеют конечные значения и равны между собой при х
и при х
, то имеется единственная наклонная асимптота, уравнение которой

Общее исследование функции

Под полным исследованием функции обычно понимается решение таких вопросов:

    Определение области существования функции.

    Выявление вопроса о четности и нечетности функции.

    Определение точек разрыва функции.

    Определение асимптот графика функции.

    Определение интервалов возрастания и убывания функции.

    Определение экстремума функции.

    Определение интервалов выпуклости и вогнутости графика функции.

    Определение точек перегиба.

    Нахождение пересечения с осями координат.

    Построение графика функции.

Пример. Исследуем функцию

D (y) = (
). Функция непрерывна на всей области определения. Точек разрыва нет.

Функция не является ни четной, ни нечетной, ни периодической.

Точек разрыва нет.

Вертикальных асимптот нет;
, наклонных асимптот нет.

5, 6.
. Критические точки х = -2, х = 0.

(
)

(
)

Знак

= 0

Поведение функции

Возрастает

3

Возрастает

7, 8.
,
при х = 1,
не существует при х = 0.

(
)

(
)

Знак

=

= 0

Поведение функции

Выпукла верх

Не является точкой перегиба

Выпукла верх

Точка перегиба

Выпукла вниз

9.
х =0 и х = -5.

Задание 1

    Вычислить определитель матрицы А второго порядка

    Вычислить определитель матрицы В третьего порядка

    Вычислить определитель матрицы В, разложив его по какой-либо строке и какому либо столбцу

    Вычислить определитель матрицы В, пользуясь свойствами определителей. Свести вычисление определителя третьего порядка к вычислению одного определителя второго порядка

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Вариант 5

Вариант 6

Вариант 7

Вариант 8

Вариант 9

Вариант 10

Задание 2

1. Решить методом Крамера систему уравнений Ах = а

    Решить методом Крамера систему уравнений В x = b

    Решить методом Гаусса систему уравнений В x = b

Задание 3.

    Ах = а

    Решить матричным методом систему уравнений В x = b

Задание 4.

Вычислить ранг матрицы.

1., 2.
;

3.
4.

5.
6.

7.
8

9.
10.

Задание 5

Даны две вершины треугольника Δ АВС: А (х 1 1 ), В (х 2 2 ) и точка D (x 3 , y 3 )пересечения высот:

а) составить уравнение высот, медиан, биссектрис треугольника Δ АВС .

б) найти уравнения прямых, проходящих через вершины треугольника и параллельных сторонам.

в) определить длины высот треугольника и расстояние от точки М (х 4 , у 4 ) до сторон треугольника.

x 1

y 1

x 2

y 2

x 3

y 3

x 4

y 4

Задание 6.

Даны координаты вершин пирамиды АВС D : А (х 1 1 , z 1 ), В (х 2 2 , z 3 ) ,C (x 2 , y 2 , z 2 ) ,D (х 4 , у 4 , z 3 )

1) длину ребра АВ; .

2) угол между ребрами АВ и А D ;

3) угол меду ребром AD и гранью ABC ;

4) площадь грани ABC ;

5) объем пирамиды;

6) уравнение прямой AB ;

7) уравнение плоскости ABC ;

8) уравнение высоты, опущенной из вершиныD на грань ABC .

n

x 1

y 1

z 1

x 2

y 2

z 2

x 3

y 3

z 3

x 4

y 4

z 4

Задание 7.

Задание 8. Найти область определения функции

5.

7.

8.

9.

10.

Задание 9.Построить график функции

1.

2.

3.

4

5.

6.

7.

8.

9.

10.

Задание 10 .Найти пределы функции

1.а)
, б)
, в)
,

г)
, д)

2.а)
, б)
, в)
,

г)
, д)

3.а)
, б)
, в)
,

г)
, д)

4. а)
, б)
, в)
,

г)
, д)

5.а)
, б)
, в)
,

г)
, д)

6.а)
, б)
, в)
,

г)
, д)

7. а)
, б)
, в)
,

г)
, д)

8.а)
, б)
, в)
,

г)
, д)

9.а)
, б)
, в)
,

г)
, д)

10.а)
, б)
, в)
,

г)
, д)

Задание 11. Найти производную

1.
, б),

в)
, г)
, д)
, е)

2. а)
, б)
, в)
,

г)
, д)
,е)

3. а), б)
, в)
, г)
, д)
, e)

4. а)
, б)
, в)
,

г)
, д)
, e)

5. а)
, б)
, в)
, г)
, д)
,

е)

6. а)
, б)
, в)
, г)
, д)
,

е)

7. а)
, б),

в)
, г)
, д)
,

е)

8. а)
, б)
, в)
, г)
, д)
,

е)

9. а)
, б)
, в)
,

г)
, д)
, е)

10. а)
, б)
, в)
,

г)
, д)
, е)

Задание 12. Показать, что функция удовлетворяет равенству

Задание 13. Найти вторую производную функции, заданной параметрически.

1 .
6.

2.
7

3.
8

4.
9.

5.
10.

Задание 14. Найти пределы, пользуясь правилом Лопиталя


Задание 15. Найти экстремумы заданных функций.

1.
6.

2.
7.

3.
8.

4.
9.

5.
10.

Задание 16. Найти наибольшее и наименьшее значение на указанных отрезках и на указанных интервалах.


Задание 17. Провести полное исследование данных функций и начертить их графики.

1.
6.

2.
7.

3.
8.

4.
9.

5.
10.

Литература:

    Баврин И.И. Курс высшей математики.-М.:Просвящение,1992.-400 с.

    Бронштейн И.Н., Семендяев К.А. Справочник по математике. М, 1967г,608 с

    Общий курс высшей математики для экономистов, под ред В.И.Ермакова-М. «Инфра-М».1999 г.-655 с.

    Теуш В.Л. Курс высшей математики. - М.: Советская наука, 1958г, 270 с.

    Шипачев В.С. Высшая математика: Учебное пособие М. Высшая школа,1990.-479с.

    Высшая математика для экономистов: Учебник для вузов/Н.Ш.Кремер, Б.А.Путко и др.; М: ЮНИТИ, 2002. – 461 с.

    Валєєв К.Г, Джалладова І.А Вища математика: Навч. Посібник.

Решение удобно разбить на два пункта:

1) Сначала проверяем, есть ли вертикальные асимптоты. Знаменатель обращается в ноль при, и сразу понятно, что в данной точке функция терпит бесконечный разрыв, а прямая, заданная уравнением, является вертикальной асимптотой графика функции. Но, прежде чем оформить такой вывод, необходимо найти односторонние пределы:


Напоминаю технику вычислений, на которой я подобно останавливался в статье Непрерывность функции. Точки разрыва. В выражение под знаком предела вместо «икса» подставляем. В числителе ничего интересного:

А вот в знаменателе получается бесконечно малое отрицательное число:

Оно и определяет судьбу предела.

Левосторонний предел бесконечный, и, в принципе уже можно вынести вердикт о наличии вертикальной асимптоты. Но односторонние пределы нужны не только для этого - они ПОМОГАЮТ ПОНЯТЬ, КАК расположен график функции и построить его КОРРЕКТНО. Поэтому обязательно вычислим и правосторонний предел:


Вывод: односторонние пределы бесконечны, значит, прямая является вертикальной асимптотой графика функции при.

Первый предел конечен, значит, необходимо «продолжить разговор» и найти второй предел:

Второй предел тоже конечен.

Таким образом, наша асимптота:

Вывод: прямая, заданная уравнением является горизонтальной асимптотой графика функции при.

Для нахождения горизонтальной асимптоты можно пользоваться упрощенной формулой:

Если существует конечный предел, то прямая является горизонтальной асимптотой графика функции при.

Нетрудно заметить, что числитель и знаменатель функции одного порядка роста, а значит, искомый предел будет конечным:


По условию не нужно выполнять чертёж, но если в самом разгаре исследование функции, то на черновике сразу же делаем набросок:

Исходя из трёх найденных пределов, попытайтесь самостоятельно прикинуть, как может располагаться график функции. Совсем трудно? Найдите 5-6-7-8 точек и отметьте их на чертеже. Впрочем, график данной функции строится с помощью преобразований графика элементарной функции, и читатели, внимательно рассмотревшие Пример 21 указанной статьи легко догадаются, что это за кривая.

Это пример для самостоятельного решения. Процесс, напоминаю, удобно разбить на два пункта - вертикальные асимптоты и наклонные асимптоты. В образце решения горизонтальная асимптота найдёна по упрощенной схеме.

На практике чаще всего встречаются дробно-рациональные функции, и после тренировки на гиперболах усложним задание:

Найти асимптоты графика функции

Решение: Раз, два и готово:

1) Вертикальные асимптоты находятся в точках бесконечного разрыва, поэтому нужно проверить, обращается ли знаменатель в ноль. Решим квадратное уравнение:

Дискриминант положителен, поэтому уравнение имеет два действительных корня, и работы значительно прибавляется

В целях дальнейшего нахождения односторонних пределов квадратный трёхчлен удобно разложить на множители:

(для компактной записи «минус» внесли в первую скобку). Для подстраховки выполним проверку, мысленно либо на черновике раскрыв скобки.

Перепишем функцию в виде

Найдём односторонние пределы в точке:


асимптота график функция предел

И в точке:


Таким образом, прямые являются вертикальными асимптотами графика рассматриваемой функции.

2) Если посмотреть на функцию, то совершенно очевидно, что предел будет конечным и у нас горизонтальная асимптота. Покажем её наличие коротким способом:

Таким образом, прямая (ось абсцисс) является горизонтальной асимптотой графика данной функции.

Найденные пределы и асимптоты дают немало информации о графике функции. Постарайтесь мысленно представить чертёж с учётом следующих фактов:

Схематично изобразите вашу версию графика на черновике.

Конечно, найденные пределы однозначно не определяют вид графика, и возможно, вы допустите ошибку, но само упражнение окажет неоценимую помощь в ходе полного исследования функции. Правильная картинка - в конце урока.

Найти асимптоты графика функции

Найти асимптоты графика функции

Это задания для самостоятельного решения. Оба графика снова обладают горизонтальными асимптотами, которые немедленно детектируются по следующим признакам: в Примере 4порядок роста знаменателя больше, чем порядок роста числителя, а в Примере 5 числитель и знаменатель одного порядка роста. В образце решения первая функция исследована на наличие наклонных асимптот полным путём, а вторая - через предел.

Горизонтальные асимптоты, по моему субъективному впечатлению, встречаются заметно чаще, чем те, которые «по-настоящему наклонены». Долгожданный общий случай:

Найти асимптоты графика функции

Решение: классика жанра:

  • 1) Поскольку знаменатель положителен, то функция непрерывна на всей числовой прямой, и вертикальные асимптоты отсутствуют. …Хорошо ли это? Не то слово - отлично! Пункт №1 закрыт.
  • 2) Проверим наличие наклонных асимптот:

Второй предел тоже конечен, следовательно, у графика рассматриваемой функции существует наклонная асимптота:

Таким образом, при график функции бесконечно близко приближается к прямой.

Заметьте, что он пересекает свою наклонную асимптоту в начале координат, и такие точки пересечения вполне допустимы - важно, чтобы «всё было нормально» на бесконечности (собственно, речь об асимптотах и заходит именно там).


Найти асимптоты графика функции

Решение: комментировать особо нечего, поэтому оформлю примерный образец чистового решения:

1) Вертикальные асимптоты. Исследуем точку.

Прямая является вертикальной асимптотой для графика при.

2) Наклонные асимптоты:


Прямая является наклонной асимптотой для графика при.

Найдённые односторонние пределы и асимптоты с высокой достоверностью позволяют предположить, как выглядит график данной функции.

Найти асимптоты графика функции

Это пример для самостоятельного решения, для удобства вычисления некоторых пределов можно почленно разделить числитель на знаменатель. И снова, анализируя полученные результаты, постарайтесь начертить график данной функции.

Очевидно, что обладателями «настоящих» наклонных асимптот являются графики тех дробно-рациональных функций, у которых старшая степень числителя на единицу больше старшей степени знаменателя. Если больше - наклонной асимптоты уже не будет (например,).

Но в жизни происходят и другие чудеса.