Теория сложения скоростей. Сложение скоростей. Центра масс системы материальных точек

Классическая механика использует понятие абсолютной скорости точки. Она определяется как сумма векторов относительной и переносной скоростей этой точки. Подобное равенство содержит утверждение теоремы о сложении скоростей. Принято представлять, что скорость движения определенного тела в неподвижной системе отсчета является равной векторной сумме скорости такого же физического тела относительно подвижной системе отсчета. В этих координатах находится непосредственно тело.

Рисунок 1. Классический закон сложения скоростей . Автор24 - интернет-биржа студенческих работ

Примеры закона сложения скоростей в классической механике

Рисунок 2. Пример сложения скоростей. Автор24 - интернет-биржа студенческих работ

Существует несколько основных примеров сложения скоростей, согласно установленным правилам, взятым за основу в механической физике. В качестве простейших объектов при рассмотрении физических законов может быть взят человек и любое движущееся тело в пространстве, с которым происходит прямое или косвенное взаимодействие.

Пример 1

Например, человек, который движется по коридору пассажирского поезда со скоростью пять километров в час, при этом состав двигается со скоростью 100 километров в час, то он относительно окружающего пространства двигается со скоростью 105 километров в час. При этом направление движения человека и транспортного средства должны совпадать. Такой же принцип действует и при движении в обратном направлении. В этом случае человек будет перемещаться относительно земной поверхности со скоростью 95 километров в час.

Если значения скорости двух объектов относительно друг друга будут совпадать, то они станут неподвижными с точки зрения движущихся объектов. При вращении скорость изучаемого объекта равна сумме скоростей движения объекта относительно движущейся поверхности другого объекта.

Принцип относительности Галилея

Ученые смогли сформулировать основные формулы для ускорений объектов. Из нее следует, что движущаяся система отсчета удаляется относительно другой без видимого ускорения. Это закономерно в тех случаях, когда ускорение тел происходит одинаково в разных системах отсчета.

Подобные рассуждения берут начало еще во времена Галилея, когда сформировался принцип относительности. Известно, что по второму закону Ньютона ускорение тел имеет принципиальное значение. От этого процесса зависит относительное положение двух тел в пространстве, скорость физических тел. Тогда все уравнения можно записать одинаковым образом в любой инерциальной системе отсчета. Это говорит о том, что классические законы механики не будут иметь зависимость от положения в инерциальной системе отсчета, как принято действовать при осуществлении исследования.

Наблюдаемое явление также не имеет зависимость от конкретного выбора системы отсчета. Подобные рамки в настоящее время рассматриваются как принцип относительности Галилея. Он вступает в некоторые противоречия с иными догмами физиков-теоретиков. В частности, теория относительности Альберта Эйнштейна предполагает иные условия действия.

Принцип относительности Галилея базируется на нескольких основных понятиях:

  • в двух замкнутых пространствах, которые движутся прямолинейно и равномерно относительно друг друга, результат внешнего воздействия всегда будет иметь одинаковое значение;
  • подобный результат будет действителен только для любого механического действия.

В историческом контексте изучения основ классической механики , подобная трактовка физических явлений сформировалась во многом, как результат интуитивного мышления Галилея, что подтвердилось в научных трудах Ньютона, когда тот представил свою концепцию классической механики . Однако подобные требования по Галилею могут накладывать на структуру механики некоторые ограничения. Это влияет на ее возможные формулировки, оформление и развитие.

Закон движения центра масс и закон сохранения импульса

Рисунок 3. Закон сохранения импульса. Автор24 - интернет-биржа студенческих работ

Одной из общих теорем в динамике стала теорема центра инерции. Ее также называют теоремой о движении центра масс системы. Подобный закон можно вывести из общих законов Ньютона. Согласно ему, ускорение центра масс в динамической системе не является прямым следствием внутренних сил, которые действуют на тела всей системы. Оно способно связать процесс ускорения с внешними силами, которые действуют на такую систему.

Рисунок 4. Закон движения центра масс. Автор24 - интернет-биржа студенческих работ

В качестве объектов, о которых идет речь в теореме, выступают:

Эти объекты можно описать как физическую векторную величину. Она является необходимой мерой воздействия силы, при этом полностью зависит от времени действия силы.

При рассмотрении закона сохранения количества движения утверждается, что векторная сумма импульсов всех тел система полностью представляется как постоянная величина. При этом векторная сумма внешних сил, которые действуют на всю систему, должна быть равна нулю.

При определении скорости в классической механике также используют динамику вращательного движения твердого тела и момент импульса. Момент импульса имеет все характерные признаки количества вращательного движения. Исследователи используют это понятие как величину, которая зависит от количества вращающейся массы, а также как она распределена по поверхности относительно оси вращения. При этом имеет значение скорости вращения.

Вращение также можно понимать не только с точки зрения классического представления вращения тела вокруг оси. При прямолинейном движении тела мимо некой неизвестной воображаемой точки, которая не лежит на линии движения, тело также может обладать моментом импульса. При описании вращательного движения момента импульса играет самую существенную роль. Это очень важно при постановке и решении разнообразных задач, связанных с механикой в классическом понимании.

В классической механике закон сохранения импульса является следствием ньютоновской механики. Он наглядно показывает, что при движении в пустом пространстве импульс сохраняется во времени. Если существует взаимодействие, то скорость его изменения определяется суммой приложенных сил.

Механическим движением называют изменение положения тела в пространстве относительно других тел с течением времени.

В этом определении ключевой является фраза «относительно других тел». Каждый из нас относительно какой-либо поверхности неподвижен, но относительно Солнца мы совершаем вместе со всей Землей орбитальное движение со скоростью 30 км/с, то есть движение зависит от системы отсчета.

Система отсчета – совокупность системы координат и часов, связанных с телом, относительно которого изучается движение.

Например, описывая движения пассажиров в салоне автомобиля, систему отсчета можно связать с придорожным кафе, а можно с салоном автомобиля или с движущимся встречным автомобилем, если мы оцениваем время обгона

Преобразование координат и времени

Закон сложения скоростей является следствием преобразований координат и времени.

Пусть частица в момент времени t’ находится в точке (x’, y’, z’) , а через малое время Δt’ в точке (x’ + Δx’, y’ + Δy’, z’ + Δz’) системы отсчета K’ . Это два события в истории дви-жущейся частицы. Имеем:

Δx’ = v x ’ Δt’,

где
v x ’ x -я компонента скорости частицы в системе K’.

Аналогичные соотношения имеют место для остальных компонент.

Разности координат и промежутки времени (Δx, Δy, Δz, Δt) преобразуются так же, как координаты:

Δx = Δx’ + VΔt’,

Δy = Δу’ ,

Δz = Δz’,

Δt = Δt’.

Отсюда следует, что скорость той же частицы в системе K будет иметь компоненты:

v x = Δx / Δt = (Δx’ + VΔt’) / Δt = v x ’ + V,

v y = v y ’,

v z = v z ’.

Это закон сложения скоростей . Его можно выразить в векторной форме:

v̅ = v̅’ + V

(координатные оси в системах K и K’ параллельны).

Закон сложения скоростей

Если тело движется относительно системы отсчета К 1 со скоростью V 1 , а сама система отсчета К 1 движется относительно другой системы отсчета К 2 со скоростью V , то скорость тела (V 2 ) относительно второй системы отсчета К 2 равна геометрической сумме векторов V 1 и V .

Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной системы отсчета.

\(\vec{V_2} = \vec{V_1} + \vec{V} \)

где всегда
К 2 - неподвижная система отсчета
V 2 - скорость тела относительно неподвижной системы отсчета (К 2 )

К 1 - подвижная система отсчета
V 1 - скорость тела относительно подвижной системы отсчета (К 1 )

V - скорость подвижной системы отсчета (К 1 ) относительно неподвижной системы отсчета (К 2 )

Закон сложения ускорений для поступательного движения

При поступательном движении тела относительно подвижной системы отсчёта и подвижной системы отсчёта относительно неподвижной, вектор ускорения материальной точки (тела) относительно неподвижной системы отсчёта $\overrightarrow{a}=\frac{d\overrightarrow{v}}{dt}=\ {\overrightarrow{a}}_{АБС}$ (абсолютное ускорение) является суммой вектора ускорения тела относительно подвижной системы отсчета ${\overrightarrow{a}}_r=\frac{d{\overrightarrow{v}}_r}{dt}={\overrightarrow{a}}_{ОТН}$ (относительного ускорения) и вектора ускорения подвижной системы отсчёта относительно неподвижной ${\overrightarrow{a}}_е=\frac{d{\overrightarrow{v}}_е}{dt}={\overrightarrow{a}}_{ПЕР}$ (переносного ускорения):

\[{\overrightarrow{a}}_{АБС}={\overrightarrow{a}}_{ОТН}+{\overrightarrow{a}}_{ПЕР}\]

В общем случае, когда движение материальной точки (тела) является криволинейным, его в каждый момент времени можно представить как комбинацию поступательного движения материальной точки (тела) относительно подвижной системы отсчёта со скоростью \({\overrightarrow{v}}_r \) , и вращательного движения подвижной системы отсчёта относительно неподвижной с угловой скоростью \({\overrightarrow{\omega }}_e \) . В этом случае, при сложении ускорений, наряду с относительным и переносным ускорением необходимо учитывать и ускорение Кориолиса \(a_c=2{\overrightarrow{\omega }}_e\times {\overrightarrow{v}}_r \) , которое характеризует изменение относительной скорости, вызванное переносным движением, и изменение переносной скорости, вызванное относительным движением.

Теорема Кориолиса

Вектор ускорения материальной точки (тела) относительно неподвижной системы отсчёта \(\overrightarrow{a}=\frac{d\overrightarrow{v}}{dt}=\ {\overrightarrow{a}}_{АБС} \) (абсолютное ускорение) является суммой вектора ускорения тела относительно подвижной системы отсчета \({\overrightarrow{a}}_r=\frac{d{\overrightarrow{v}}_r}{dt}={\overrightarrow{a}}_{ОТН} \) (относительного ускорения), вектора ускорения подвижной системы отсчёта относительно неподвижной \({\overrightarrow{a}}_е=\frac{d{\overrightarrow{v}}_е}{dt}={\overrightarrow{a}}_{ПЕР} \) (переносного ускорения), и кориолисова ускорения \(a_c=2{\overrightarrow{{\mathbf \omega }}}_e\times {\overrightarrow{v}}_r={\overrightarrow{a}}_{КОР} \) :

\[{\overrightarrow{a}}_{АБС}={\overrightarrow{a}}_{ОТН}+{\overrightarrow{a}}_{ПЕР}+{\overrightarrow{a}}_{КОР}\]

Абсолютное перемещение равно сумме относительного и переносного перемещений.

Перемещение тела в неподвижной системе отсчета равно сумме перемещений: тела в подвижной системе отсчета и самой подвижной системы отсчета относительно неподвижной.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Выведем закон, связывающий проекции скорости частицы в ИСО К и К".

На основании преобразований Лоренца (1.3.12) для бесконечно малых приращений координат частицы и времени можно написать

Разделив в (1.6.1) первые три равенства на четвёртое, а затем числители и знаменатели правых частей получившихся соотношений на dt" и учтя, что

есть проекции скоростей частицы на оси СО К и К", приходим к искомому закону:

Если частица совершает одномерное движение вдоль осей ОХ и О"Х", то, в соответствии с (1.6.2),

Пример 1. ИСО К" движется со скоростью V относительно ИСО К. Под углом 0" к направлению движения в ИСО К" выпущена пуля со скоростью v". Чему равен этот угол 0 в ИСО К?

Решение. При движении происходит не только сокращение пространственных, но и растяжение временных интервалов. Для нахождения tg0 = v y /v x следует в (1.6.2) разделить вторую формулу на первую, а затем числитель и знаменатель получившейся справа дроби - на v" x = v"cos0" Учитывая, что v" y /v" x = tg0", находим


Для малых по сравнению со скоростью света скоростей формулы (1.6.2) переходят в известный закон классической механики (1.1.4):

Из формул преобразования проекций скорости частицы (1.6.2) нетрудно определить модуль скорости и её направление в ИСО К через скорость частицы в ИСО К". Для этого выберем оси координат так, чтобы скорость частицы в данный момент лежала в плоскости XOY (а, значит, и в плоскости Х"0"Y"), и обозначим через 0 (0") угол между

V (V") и осью ОХ (О"Х"). Тогда

v x = vcos0, v = vsin0, v" x = v"cos©", v* = v"sin©", v z = v" z = 0 (1.6.4) или

Что касается направления скорости частицы в СО К (угол 0), то оно определяется путём почленного деления в (1.6.5) второй формулы на первую:

и подстановка (1.6.4) в (1.6.2) даёт

После возведения в квадрат обоих равенств (1.6.5) и их сложения, получим


Формулы обратного преобразования получаются при замене штрихованных величин на не штрихованные и обратно и заменой V на - V.

Задача 2. Определить относительную скорость v 0TH сближения двух космических аппаратов 1 и 2, движущихся навстречу друг другу со скоростями Х И V2-

Решение. Свяжем подвижную СО К" с космическим аппаратом 1. Тогда V = Vi, а искомой относительной скоростью v 0TH будет являться скорость аппарата 2 в этой СО. Применяя релятивистский закон сложения скоростей (1.6.3) ко второму аппарату с учётом направления его скорости (v" 2 = -v 0TH) имеем

Численные оценки для v, = v 2 = 0,9 с дают

Задача 3. Тело со скоростью v 0 налетает перпендикулярно на стенку, движущуюся ему навстречу со скоростью. Пользуясь релятивистским законом сложения скоростей, найти скорость v 0Tp тела после отскока. Удар абсолютно упругий, масса стенки намного больше массы тела. Найти v 0Tp , если v 0 = v = с/3 . Проанализировать предельные случаи.

где V - скорость СО К" относительно СО К. Свяжем СО К" со стенкой. Тогда V = -v ив этой СО начальная скорость тела, согласно выражению для v",

Вернёмся теперь назад в лабораторную СО К. Подставляя в

(1.6.3) v" 0Tp вместо v" и учитывая опять же, что V = -v, после несложных преобразований получаем искомый результат:

Проанализируем теперь предельные случаи.

Если скорости тела и стенки малы (v 0 « с, v « с), то можно пренебречь всеми членами, где эти скорости и их произведение делятся на скорость света. Тогда из полученной выше общей формулы приходим к известному результату классической механики: v 0Tp = -(v 0 + 2v) -

скорость тела после отскока увеличивается на удвоенную скорость стенки; направлена она, естественно, противоположно начальной. Ясно, что в релятивистском случае этот результат неверен. В частности, при v 0 =v = c/3 из него следует, что скорость тела после отскока будет равна - с, чего быть не может.

Пусть теперь на стенку налетает тело, движущееся со скоростью света (например, лазерный луч отражается от движущегося зеркала). Подставляя v 0 = с в общее выражение для v , получаем v = -с.

Это означает, что скорость лазерного луча изменила направление, но не свою абсолютную величину, - в полном согласии с принципом инвариантности скорости света в вакууме.

Рассмотрим теперь случай, когда стенка движется с релятивистской скоростью v -> с. В этом случае

Тело после отскока также будет двигаться со скоростью, близкой к скорости света.

  • Наконец, подставим в общую формулу для v 0Tp значения

v n = v = с/3 . Тогда = -с * -0,78 с. В отличие от классической

механики, теория относительности даёт для скорости после отскока значение, меньшее скорости света.

В заключение посмотрим, что случится, если стенка удаляется от тела с той же скоростью v = -v 0 . В этом случае общая формула для v 0Tp приводит к результату: v = v 0 . Как и в классической механике, тело стенку не догонит и, следовательно, его скорость не изменится.

Результаты опыта описывались формулами

где п - показатель преломления воды, а V - скорость её течения.

До создания СТО результаты опыта Физо рассматривались на основе выдвинутой ещё О. Френелем гипотезы, в рамках которой следовало считать, что движущаяся вода частично увлекает за собой «мировой эфир». Величина

получила название коэффициента увлечения эфира, а формулы (1.7.1) и (1.7.2) при таком подходе непосредственно вытекают из классического закона сложения скоростей: с/п - скорость света в воде относительно эфира, kV - скорость эфира относительно опытной установки.

Мы говорили, что скорость света - максимально возможная скорость распространения сигнала. Но что будет, если свет испускается движущимся источником в направлении его скорости V ? Согласно закону сложения скоростей, следующему из преобразований Галилея, скорость света должна быть равна c + V . Но в теории относительности это невозможно. Посмотрим, какой закон сложения скоростей следует из преобразований Лоренца. Для этого запишем их для бесконечно малых величин:

По определению скорости ее компоненты в системе отсчета K находятся как отношения соответствующих перемещений к временным интервалам:

Аналогично определяется скорость объекта в движущейся системе отсчета K" , только пространственные расстояния и временные интервалы надо взять относительно этой системы:

Следовательно, разделив выражение dx на выражение dt , получим:

Разделив числитель и знаменатель на dt" , находим связь x -компонент скоростей в разных системах отсчета, которая отличается от галилеевского правила сложения скоростей:

Кроме того, в отличие от классической физики, меняются и компоненты скоростей, ортогональные направлению движения. Аналогичные вычисления для других компонент скоростей дают:

Таким образом, получены формулы для преобразования скоростей в релятивистской механике. Формулы обратного преобразования получаются при замене штрихованных величин на нештрихованные и обратно и заменой V на –V .

Теперь мы можем ответить на вопрос, поставленный в начале данного раздела. Пусть в точке 0" движущейся системы отсчета K" установлен лазер, посылающий импульс света в положительном направлении оси 0"х" . Какой будет скорость импульса для неподвижного наблюдателя в системе отсчета К ? В этом случае скорость светового импульса в системе отсчета К" имеет компоненты

Применяя закон релятивистского сложения скоростей, находим для компонент скорости импульса относительно неподвижной системы К :

Мы получаем, что скорость светового импульса и в неподвижной системе отсчета, относительно которой источник света движется, равна

Тот же результат получится при любом направлении распространения импульса. Это естественно, так как независимость скорости света от движения источника и наблюдателя заложена в одном из постулатов теории относительности. Релятивистский закон сложения скоростей - следствие этого постулата.

Действительно, когда скорость движения подвижной системы отсчета V << c , преобразования Лоренца переходят в преобразования Галилея, мы получаем обычный закон сложения скоростей

При этом ход течения времени и длина линейки будут одинаковы в обеих системах отсчета. Таким образом, законы классической механики применимы, если скорости объектов много меньше скорости света. Теория относительности не зачеркнула достижения классической физики, она установила рамки их справедливости.

Пример. Тело со скоростью v 0 налетает перпендикулярно на стенку, двигающуюся ему навстречу со скоростью v . Пользуясь формулами для релятивистского сложения скоростей, найдем скорость v 1 тела после отскока. Удар абсолютно упругий, масса стенки намного больше массы тела.

Воспользуемся формулами, выражающими релятивистский закон сложения скоростей.

Направим ось х вдоль начальной скорости тела v 0 и свяжем систему отсчета K" со стенкой. Тогда v x = v 0 и V = –v . В системе отсчета, связанной со стенкой, начальная скорость v" 0 тела равна

Вернемся теперь назад в лабораторную систему отсчета К . Подставляя в релятивистский закон сложения скоростей v" 1 вместо v" x и учитывая опять же V = –v , находим после преобразований:

Классическая механика использует понятие абсолютной скорости точки. Она определяется как сумма векторов относительной и переносной скоростей этой точки. Подобное равенство содержит утверждение теоремы о сложении скоростей. Принято представлять, что скорость движения определенного тела в неподвижной системе отсчета является равной векторной сумме скорости такого же физического тела относительно подвижной системе отсчета. В этих координатах находится непосредственно тело.

Рисунок 1. Классический закон сложения скоростей . Автор24 - интернет-биржа студенческих работ

Примеры закона сложения скоростей в классической механике

Рисунок 2. Пример сложения скоростей. Автор24 - интернет-биржа студенческих работ

Существует несколько основных примеров сложения скоростей, согласно установленным правилам, взятым за основу в механической физике. В качестве простейших объектов при рассмотрении физических законов может быть взят человек и любое движущееся тело в пространстве, с которым происходит прямое или косвенное взаимодействие.

Пример 1

Например, человек, который движется по коридору пассажирского поезда со скоростью пять километров в час, при этом состав двигается со скоростью 100 километров в час, то он относительно окружающего пространства двигается со скоростью 105 километров в час. При этом направление движения человека и транспортного средства должны совпадать. Такой же принцип действует и при движении в обратном направлении. В этом случае человек будет перемещаться относительно земной поверхности со скоростью 95 километров в час.

Если значения скорости двух объектов относительно друг друга будут совпадать, то они станут неподвижными с точки зрения движущихся объектов. При вращении скорость изучаемого объекта равна сумме скоростей движения объекта относительно движущейся поверхности другого объекта.

Принцип относительности Галилея

Ученые смогли сформулировать основные формулы для ускорений объектов. Из нее следует, что движущаяся система отсчета удаляется относительно другой без видимого ускорения. Это закономерно в тех случаях, когда ускорение тел происходит одинаково в разных системах отсчета.

Подобные рассуждения берут начало еще во времена Галилея, когда сформировался принцип относительности. Известно, что по второму закону Ньютона ускорение тел имеет принципиальное значение. От этого процесса зависит относительное положение двух тел в пространстве, скорость физических тел. Тогда все уравнения можно записать одинаковым образом в любой инерциальной системе отсчета. Это говорит о том, что классические законы механики не будут иметь зависимость от положения в инерциальной системе отсчета, как принято действовать при осуществлении исследования.

Наблюдаемое явление также не имеет зависимость от конкретного выбора системы отсчета. Подобные рамки в настоящее время рассматриваются как принцип относительности Галилея. Он вступает в некоторые противоречия с иными догмами физиков-теоретиков. В частности, теория относительности Альберта Эйнштейна предполагает иные условия действия.

Принцип относительности Галилея базируется на нескольких основных понятиях:

  • в двух замкнутых пространствах, которые движутся прямолинейно и равномерно относительно друг друга, результат внешнего воздействия всегда будет иметь одинаковое значение;
  • подобный результат будет действителен только для любого механического действия.

В историческом контексте изучения основ классической механики , подобная трактовка физических явлений сформировалась во многом, как результат интуитивного мышления Галилея, что подтвердилось в научных трудах Ньютона, когда тот представил свою концепцию классической механики . Однако подобные требования по Галилею могут накладывать на структуру механики некоторые ограничения. Это влияет на ее возможные формулировки, оформление и развитие.

Закон движения центра масс и закон сохранения импульса

Рисунок 3. Закон сохранения импульса. Автор24 - интернет-биржа студенческих работ

Одной из общих теорем в динамике стала теорема центра инерции. Ее также называют теоремой о движении центра масс системы. Подобный закон можно вывести из общих законов Ньютона. Согласно ему, ускорение центра масс в динамической системе не является прямым следствием внутренних сил, которые действуют на тела всей системы. Оно способно связать процесс ускорения с внешними силами, которые действуют на такую систему.

Рисунок 4. Закон движения центра масс. Автор24 - интернет-биржа студенческих работ

В качестве объектов, о которых идет речь в теореме, выступают:

  • импульс материальной точки;
  • система тел.

Эти объекты можно описать как физическую векторную величину. Она является необходимой мерой воздействия силы, при этом полностью зависит от времени действия силы.

При рассмотрении закона сохранения количества движения утверждается, что векторная сумма импульсов всех тел система полностью представляется как постоянная величина. При этом векторная сумма внешних сил, которые действуют на всю систему, должна быть равна нулю.

При определении скорости в классической механике также используют динамику вращательного движения твердого тела и момент импульса. Момент импульса имеет все характерные признаки количества вращательного движения. Исследователи используют это понятие как величину, которая зависит от количества вращающейся массы, а также как она распределена по поверхности относительно оси вращения. При этом имеет значение скорости вращения.

Вращение также можно понимать не только с точки зрения классического представления вращения тела вокруг оси. При прямолинейном движении тела мимо некой неизвестной воображаемой точки, которая не лежит на линии движения, тело также может обладать моментом импульса. При описании вращательного движения момента импульса играет самую существенную роль. Это очень важно при постановке и решении разнообразных задач, связанных с механикой в классическом понимании.

В классической механике закон сохранения импульса является следствием ньютоновской механики. Он наглядно показывает, что при движении в пустом пространстве импульс сохраняется во времени. Если существует взаимодействие, то скорость его изменения определяется суммой приложенных сил.