Зависимость электропроводности металлов от температуры. Зависимость теплопроводности диэлектриков от температуры. Температурная зависимость электропроводности собственных и примесных полупроводников Температурная зависимость электропроводности собственных

Как отмечалось во Введении, с ростом температуры в полупроводнике будет появляться все больше свободных носителей электрического заряда – электронов в зоне проводимости и дырок в валентной зоне. Если внешнее электрическое поле отсутствует, то движение этих заряженных частиц носит хаотический характер и ток через любое сечение образца равен нулю. Среднюю скорость частиц – т.н. «тепловую скорость» можно рассчитать по той же формуле, что и среднюю тепловую скорость молекул идеального газа

где k - постоянная Больцмана; m -эффективная масса электронов или дырок.

При приложении внешнего электрического поля в полупроводнике появится направленная, «дрейфовая» компонента скорости – по полю у дырок, против поля – у электронов, т.е. через образец потечет электрический ток. Плотность тока j будет складываться из плотностей «электронного» j n и «дырочного» j p токов:

где n, p - концентрации свободных электронов и дырок; υ n , υ p – дрейфовые скорости носителей заряда.

Здесь следует заметить, что хотя заряды у электрона и дырки – противоположные по знаку, но и векторы дрейфовых скоростей направлены в противоположные стороны, т. е. суммарный ток фактически является суммой модулей электронного и дырочного токов.

Очевидно, что скорости υ n и υ p будут сами зависеть от внешнего электрического поля (в простейшем случае – линейно). Введем коэффициенты пропорциональности μ n и μ p , называемые «подвижностями» носителей заряда

и перепишем формулу 2 в виде:

j = en n E + ep p E = n E + p E = E. (4)

Здесь - электропроводность полупроводника, а n и p - ее электронная и дырочная составляющие, соответственно.

Как видно из (4) электропроводность полупроводника определяется концентрациями свободных носителей заряда в нем и их подвижностями. Это будет справедливым и для электропроводности металлов. Но в металлах концентрация электронов очень велика
и не зависит от температуры образца.Подвижность электронов в металлах убывает с температурой вследствие увеличения числа столкновений электронов с тепловыми колебаниями кристаллической решетки, что и приводит к уменьшению электропроводности металлов с ростом температуры. В полупроводниках же основной вклад в температурную зависимость электропроводности вносит зависимость от температуры концентрации носителей заряда.

Рассмотрим процесс теплового возбуждения (генерации ) электронов из валентной зоны полупроводника в зону проводимости. Хотя средняя энергия тепловых колебаний атомов кристалла
составляет, например, при комнатной температуре всего 0,04 эВ, что намного меньше ширины запрещенной зоны большинства полупроводников, среди атомов кристалла будут и такие, энергия колебаний которых соизмерима сε g . При передаче энергии от этих атомов электронам, последние переходят в зону проводимости. Количество электронов в интервале энергий от ε до ε +d ε зоны проводимости можно записать как:

где
- плотность энергетических уровней (6);

- вероятность заселения уровня с энергией ε электроном (функция распределения Ферми ). (7)

В формуле (7) символом F обозначен т.н. уровень Ферми. В металлах уровень Ферми – последний занятый электронами уровень при абсолютном нуле температуры (см. Введение). Действительно, f (ε ) = 1 при ε < F и f (ε ) = 0 при ε > F (рис.1).

Рис.1. Распределение Ферми-Дирака; ступенчатое при температуре абсолютного нуля и «размытое» при конечных температурах.

В полупроводниках, как мы увидим в дальнейшем, уровень Ферми обычно находится в запрещенной зоне, т.е. на нем не может находиться электрон. Однако и в полупроводниках при Т = 0 все состояния, лежащие ниже уровня Ферми, заполнены, а состояния выше уровня Ферми – пусты. При конечной температуре вероятность заселения электронами уровней с энергией ε > F уже не равна нулю. Но концентрация электронов в зоне проводимости полупроводника все же намного меньше числа свободных энергетических состояний в зоне, т.е.
. Тогда в знаменателе (7) можно пренебречь единицей и записать функцию распределения в «классическом» приближении:

. (8)

Концентрацию электронов в зоне проводимости можно получить, проинтегрировав (5) по зоне проводимости от ее дна - Е 1 до вершины - Е 2 :

В интеграле (9) за нуль отсчета энергий принято дно зоны проводимости, а верхний предел заменен на
из-за быстрого убывания экспоненциального множителя с ростом энергии.

После вычисления интеграла получим:

. (10)

Вычисления концентрации дырок в валентной зоне дают:

. (11)

Для полупроводника, в составе которого отсутствуют примеси, т.н. собственного полупроводника, концентрация электронов в зоне проводимости должна быть равна концентрации дырок в валентной зоне (условие электронейтральности ). (Отметим, что таких полупроводников в природе не существует, но при определенных температурах и определенных концентрациях примесей можно пренебречь влиянием последних на свойства полупроводника). Тогда, приравнивая (10) и (11), получаем для уровня Ферми в собственном полупроводнике:

. (12)

Т.е. при абсолютном нуле температур уровень Ферми в собственном полупроводнике расположен точно посередине запрещенной зоны, и проходит вблизи середины запрещенной зоны при не очень высоких температурах, несколько смещаясь обычно в сторону зоны проводимости (эффективная масса дырок, как правило, больше эффективной массы электронов (см.Введение). Теперь, подставляя (12) в (10), для концентрации электронов получим:

. (13)

Аналогичное соотношение получится и для концентрации дырок:

. (14)

Формулы (13) и (14) с достаточной точностью позволяют рассчитать концентрации носителей заряда в собственном полупроводнике. Значения концентрации, вычисленные по этим соотношениям, называются собственными концентрациями. Например, для германия Ge, кремния Si и арсенида галлия GaAs при Т=300 К они составляют соответственно. Практически же, для изготовления полупроводниковых приборов, применяются полупроводники со значительно более высокими концентрациями носителей заряда (
). Бóльшая, по сравнению с собственной, концентрация носителей обусловлена введением в полупроводникэлектроактивных примесей (существуют еще т.н. амфотерные примеси, введение которых в полупроводник не изменяет концентрацию носителей в нем). Примесные атомы в зависимости от валентности и ионного (ковалентного) радиуса могут по-разному входить в кристаллическую решетку полупроводника. Одни из них могут замещать атом основного вещества в узле решетки – примеси замещения. Другие располагаются преимущественно в междоузлиях решетки – примеси внедрения. Различно и их влияние на свойства полупроводника.

Допустим, что в кристалле из четырехвалентных атомов кремния часть атомов Si замещена атомами пятивалентного элемента, например, атомами фосфора Р. Четыре валентных электрона атома фосфора образуют ковалентную связь с ближайшими атомами кремния. Пятый валентный электрон атома фосфора будет связан с ионным остовом кулоновским взаимодействием. В целом эта пара из иона фосфора с зарядом +е и связанного с ним кулоновским взаимодействием электрона будет напоминать атом водорода, вследствие чего такие примеси называются еще и водородоподобными примесями. Кулоновское взаимодействие в кристалле будет значительно ослаблено из-за электрической поляризации окружающих примесный ион соседних атомов. Энергию ионизации такого примесного центра можно оценить по формуле:

, (15)

где - первый потенциал ионизации для атома водорода – 13,5 эВ;

χ – диэлектрическая проницаемость кристалла (χ =12 для кремния).

Подставив в (15) эти значения и значение эффективной массы электронов в кремнии - m n = 0,26 m 0 , получим для энергии ионизации атома фосфора в кристаллической решетке кремния ε I = 0,024 эВ, что существенно меньше ширины запрещенной зоны и даже меньше средней тепловой энергии атомов при комнатной температуре. Это означает, во-первых, что примесные атомы гораздо легче ионизировать, чем атомы основного вещества и, во-вторых, - при комнатной температуре эти примесные атомы будут все ионизированы. Появление в зоне проводимости полупроводника электронов, перешедших туда с примесных уровней, не связано с образованием дырки в валентной зоне. Поэтому концентрация основных носителей тока – электронов в данном образце может на несколько порядков превышать концентрацию неосновных носителей – дырок. Такие полупроводники называются электронными или полупроводниками n-типа, а примеси, сообщающие полупроводнику электронную проводимость, называются донорами . Если в кристалл кремния ввести примесь атомов трехвалентного элемента, например, - бора В, то одна из ковалентных связей примесного атома с соседними атомами кремния остается незавершенной. Захват на эту связь электрона с одного из соседних атомов кремния приведет в появлению дырки в валентной зоне, т.е. в кристалле будет наблюдаться дырочная проводимость (полупроводник р-типа ). Примеси, захватывающие электрон, называются акцепторами. На энергетической диаграмме полупроводника (рис.2) донорный уровень размещается ниже дна зоны проводимости на величину энергии ионизации донора, а акцепторный – выше потолка валентной зоны на энергию ионизации акцептора. Для водородоподобных доноров и акцепторов, какими являются в кремнии элементы V и III групп Периодической системы Менделеева, энергии ионизации примерно равны.

Рис.2. Энергетические диаграммы электронного(слева) и дырочного (справа) полупроводников. Показано положение уровней Ферми при температурах, близких к абсолютному нулю.

Вычисление концентрации носителей заряда в полупроводнике с учетом примесных электронных состояний – задача достаточно непростая и аналитическое решение ее можно получить только в некоторых частных случаях.

Рассмотрим полупроводник n-типа при температуре, достаточно низкой. В этом случае можно пренебречь собственной проводимостью. Все электроны в зоне проводимости такого полупроводника – это электроны, перешедшие туда с донорных уровней:

. (16)

Здесь
- концентрация донорных атомов;

- число электронов, оставшихся еще на донорных уровнях :

. (17)

С учетом (10) и (17) уравнение 16 запишем в виде:

. (18)

Решая это квадратное уравнение относительно
, получим

Рассмотрим решение уравнения при очень низких температурах (на практике – это обычно температуры порядка десятков градусов Кельвина), когда второе слагаемое под знаком квадратного корня много больше единицы. Пренебрегая единицами, получим:

, (20)

т.е. при низких температурах уровень Ферми расположен примерно посередине между донорным уровнем и дном зоны проводимости (при Т = 0К – точно посередине). Если подставить (20) в формулу для концентрации электронов (10), то можно видеть, что концентрация электронов растет с температурой по экспоненциальному закону

. (21)

Показатель экспоненты
указывает на то, что в данном диапазоне температур концентрация электронов растет за счетионизации донорных примесей.

При более высоких температурах, - при таких, когда собственная проводимость еще незначительна, но выполняется условие
, второе слагаемое под корнем будет меньше единицы и используя соотношение

+…., (22)

получим для положения уровня Ферми

, (23)

а для концентрации электронов

. (24)

Все доноры уже ионизированы, концентрация носителей в зоне проводимости равна концентрации донорных атомов – это т.н. область истощения примесей. При еще более высоких температурах происходит интенсивный заброс в зону проводимости электронов из валентной зоны (ионизация атомов основного вещества) и концентрация носителей заряда снова начинает расти по экспоненциальному закону (13), характерному для области с собственной проводимостью. Если представить зависимость концентрации электронов от температуры в координатах
, то она будет выглядеть в виде ломаной линии, состоящей из трех отрезков, соответствующих рассмотренным выше температурным диапазонам (рис.3).

Рис.3. Температурная зависимость концентрации электронов в полупроводникеn-типа.

Аналогичные соотношения, с точностью до множителя, получаются при вычислении концентрации дырок в полупроводнике р-типа.

При очень высоких концентрациях примесей (~10 18 -10 20 см -3) полупроводник переходит в т.н. вырожденное состояние. Примесные уровни расщепляются в примесную зону, которая может частично перекрыться с зоной проводимости (в электронных полупроводниках) или с валентной зоной (в дырочных). При этом концентрация носителей заряда практически перестает зависеть от температуры вплоть до очень высоких температур, т.е. полупроводник ведет себя как металл (квазиметаллическая проводимость ). Уровень Ферми в вырожденных полупроводниках будет располагаться или очень близко от края соответствующей зоны, или даже заходить внутрь разрешенной энергетической зоны, так, что и зонная диаграмма такого полупроводника будет похожа на зонную диаграмму металла (см. рис. 2а Введения). Для расчета концентрации носителей заряда в таких полупроводниках функцию распределения следует брать не в виде (8), как это делалось выше, а в виде квантовой функции (7). Интеграл (9) в этом случае вычисляется численными методами и носит название интеграла Ферми-Дирака. Таблицы интегралов Ферми-Дирака для значений приведены, например, в монографии Л.С.Стильбанса.

При
степень вырождения электронного (дырочного) газа настолько высока, что концентрация носителей не зависит от температуры вплоть до температуры плавления полупроводника. Такие «вырожденные» полупроводники используются в технике для изготовления ряда электронных приборов, среди которых важнейшими являютсяинжекционные лазеры и туннельные диоды.

Определенный, хотя и менее существенный вклад, в температурную зависимость электропроводности будет вносить температурная зависимость подвижности носителей заряда. Подвижность, «макроскопическое» определение которой дано нами в (3), может быть выражена через «микроскопические» параметры – эффективную массу и время релаксации импульса – среднее время свободного пробега электрона (дырки) между двумя последовательными столкновениями с дефектами кристаллической решетки:

, (25)

а электропроводность, с учетом соотношений (4) и (25) запишется, как:

. (26)

В качестве дефектов – центров рассеяния могут выступать тепловые колебания кристаллической решетки – акустические и оптические фононы (см. методич. пособие «Структура и динамика…»), примесные атомы – ионизированные и нейтральные, лишние атомные плоскости в кристалле – дислокации, поверхность кристалла и границы зерен в поликристаллах и т.д. Сам процесс рассеяния носителей заряда на дефектах может быть упругим и неупругим – в первом случае происходит только изменение квазиимпульса электрона (дырки); во-втором – изменение и квазиимпульса и энергии частицы. Если процесс рассеяния носителя заряда на дефектах решетки –упругий , то время релаксации импульса можно представить в виде степенной зависимости от энергии частицы:
. Так, для наиболее важных случаев упругого рассеяния электронов на акустических фононах и ионах примеси

(27)

и
. (28)

Здесь
- величины, не зависящие от энергии;
- концентрацияионизированных примесей любого типа.

Усреднение времени релаксации осуществляется по формуле:

;
. (29)

С учетом (25)-(29) получим:


. (30)

Если в каком-либо диапазоне температур вклады в подвижность носителей, соответствующие разным механизмам рассеяния, сопоставимы по величине, то подвижность будет рассчитываться по формуле:

, (31)

где индекс i соответствует определенному механизму рассеяния: на примесных центрах, на акустических фононах, оптических фононах и т.д.

Типичная зависимость подвижности электронов (дырок) в полупроводнике от температуры показана на рис.4.

Рис.4. Типичная зависимость от температуры подвижности носителей заряда в полупроводнике.

При очень низких температурах (в районе абсолютного нуля) примеси еще не ионизированы, рассеяние происходит на нейтральных примесных центрах и подвижность практически не зависит от температуры (рис.4, участок а-б). С повышением температуры концентрация ионизированных примесей растет по экспоненциальному закону, а подвижность падает согласно (30) – участок б-в. В области истощения примесей концентрация ионизированных примесных центров уже не изменяется, и подвижность растет, как
(рис.4, в-г). При дальнейшем повышении температуры начинает преобладать рассеяние на акустических и оптических фононах и подвижность снова падает (г-д).

Поскольку температурная зависимость подвижности в основном – степенная функция температуры, а температурная зависимость концентрации – в основном экспоненциальная, то и температурный ход электропроводности будет в основных чертах повторять температурную зависимость концентрации носителей заряда. Это дает возможность достаточно точно определять по температурной зависимости электропроводности важнейший параметр полупроводника – ширину его запрещенной зоны, что и предлагается проделать в данной работе.

Металлов

Электропроводность металлов, полупроводников и диэлектриков связана с наличием в них свободных носителей зарядов: электронов и дырок и их упорядоченным движением под действием электрического поля E . Движение носителей заряда под действием магнитного поля в настоящей работе не рассматривается. Проводимость σ определяется формулой

σ = q n μ n + q р μ p, (1)

где q – элементарный заряд, n – концентрация электронов, р – концентрация дырок, μ n – подвижность электронов, μ p – подвижность дырок.

Существует три типа металлов, отличающихся по типу проводимости: электронные (проводимость связана с движением электронов), дырочные (проводимость связана с движением дырок) и металлы со смешенным типом проводимости (проводимость связана с движением электронов и дырок). У всех типов металлов концентрация носителей заряда очень слабо зависит от температуры . Например, у электронных металлов она равна концентрации валентных электронов и составляет n ~ 1022 штук на кубический сантиметр.

Подвижность носителей определяется химическим составом, структурой кристаллической решетки и температурой металла. У чистых металлов с идеальной кристаллической решеткой при температуре Т =0 К электроны движутся по волновым коридорам вдоль атомов, расположенных в узлах кристаллической решетки, при этом средняя длина свободного пробега электронов велика и сопротивление минимально. У некоторых металлов наблюдается явление сверхпроводимости. В настоящем издании это явление не рассматривается.

В реальных кристаллах всегда имеются атомы примесей и дефекты кристаллической решетки. На этих неоднородностях происходит рассеяние электронов, что приводит к уменьшению средней длины свободного пробега и увеличению электрического сопротивления. Это явление определяет сопротивление проводников при низких температурах. При Т >0 К атомы совершают тепловые колебания и возникает рассеяние электронов на тепловых колебаниях решетки. При повышении температуры это явление в основном обуславливает величину электрического сопротивления. Подвижность носителей заряда определяется средней длиной свободного пробега электронов.

Для практических целей определения удельного сопротивления чистого металла ρ часто используют формулу

ρ =ρ 0(1+αТ ), (2)

где ρ 0 – удельное сопротивление при комнатной температуре, a – положительный, слабо зависящий от температуры температурный коэффициент сопротивления металлов.

2. Температурная зависимость электропроводимости полупроводников и диэлектриков

В отличие от металлов, в полупроводниках и диэлектриках концентрация носителей и их подвижность зависят от температуры. На рис.1,а приведена зонная диаграмма собственного полупроводника (i - типа). Здесь изображены зависимости уровней энергии дна зоны проводимости W c, верха валентной зоны W v и уровня энергии Ферми W Fi , а также зависимость концентрации электронов n i и дырок pi от температуры Т . На рисунке по вертикальной оси отложена энергия W в электрон-вольтах, концентрация свободных носителей заряда ni , pi в одном кубическом сантиметре полупроводникового кристалла, а по горизонтальной – температура в градусах Кельвина. Уровни W c, и W v (непрерывные горизонтальные линии) не зависят от Т . Положение уровня Ферми


где k = 0.86·10−4 эВ/К постоянная Больцмана, m n* и m p* ‑ эффективные массы электронов и дырок. Если m n* ≈ m p* и полупроводник широкозонный ΔW = W c − W v ~ 1 эВ, то второй член при Т = 300 К имеет порядок 0.03 эВ и слабо изменяет положение уровня энергии Ферми. Вплоть до температур плавления вкладом второго члена можно пренебречь и считать W Fi не зависящей от температуры (горизонтальная пунктирная линия на рис.1,а).

При Т = 0 К все электроны “связаны со своими атомами” и свободных носителей заряда нет. Полупроводник является идеальным изолятором. При повышении температуры начинаются тепловые колебания атомов кристаллической решетки. В результате электрон может получить энергию, достаточную для преодоления запрещенной зоны, и попасть в зону проводимости. Такой процесс называется тепловой генерацией пары электрон – дырка. Электрон совершает хаотические (броуновские) движения по всему объему полупроводника в межатом-ном пространстве. Дырки также хаотически перемещаются, но только по межатомным электронным связям. Через некоторое время τ электрон рекомбинирует с дыркой, но в другом месте полупроводника появится новая пара. Равновесные концентрации электронов и дырок n i , дырок p i равны и определяются:

n i = N c exp (−ΔW / 2kT ),

p i = N v exp (−ΔW / 2kT ), (4)

где N c =2(2πm n*kT /h 2)3/2 – плотность квантовых состояний у дна зоны проводимости, N v = 2(2πm p*kT /h 2)3/2 – плотность квантовых состояний у верха валентной зоны, а h = 4.14·10−15 эВ·c ‑ постоянная Планка.

Экспоненциальная зависимость концентрации свободных носителей от температуры показана на рис.1,а жирной линией. В собственном полупроводнике концентрация свободных носителей заряда при всех температурах, вплоть до температуры плавления, существенно меньше концентрации валентных электронов, поэтому проводимость полупроводников на несколько порядков меньше проводимости металлов. Исключение составляют вырожденные полупроводники, у которых уровень Ферми располагается в зоне проводимости. Это может произойти при нагревании узкозонных полупроводников, у которых ΔW ~ kT .

В примесном полупроводнике n -типа уровень энергии W d валентного электрона атома донорной примеси, который не участвует в образовании ковалентных связей с соседними атомами полупроводника, располагается в запрещенной зоне недалеко от дна зоны проводимости (рис.1,б). В этом случае при Т = 0 К уровни энергии валентной зоны и примеси заполнены электронами, в зоне проводимости электронов нет и уровень Ферми располагается посередине между W d и W с. Энергетический зазор ΔW n = W cW d << ΔW , и при повышении температуры вероятность перехода электронов с уровня энергии донорной примеси существенно больше, чем с уровня энергии верха валентной зоны. Поэтому концентрация свободных электронов в зоне проводимости вначале экспоненциально растет:

n n = N c exp (−ΔW n/ kT ), (5)

а уровень Ферми понижается. При температуре активации примеси T s вероятность нахождения электрона на уровне донорной примеси F n(W ) = 0.5 и уровень Ферми пересекает W d.

При дальнейшем повышении температуры концентрация свободных носителей n n ≈ N d (N d – концентрация донорной примеси) и уровень Ферми изменяются слабо. При температуре порядка температуры истощения примеси Ti концентрация электронов собственной проводимости полупроводника n i становится соизмеримой с N d, при этом начинается рост n n = N d + ni , а уровень Ферми постепенно понижается. При T > Ti концентрация тепловых электронов и дырок становится больше концентрации примесных электронов и вклад собственной проводимости становится определяющим. При этом уровень Ферми асимптотически стремится к положению уровня Ферми в собственном полупроводнике WFi .

Аналогичные явления наблюдаются и в примесном полупроводнике р - типа (рис.1,в). В этом случае концентрация дырок в области малых температур также изменяется по экспоненциальному закону:

p p = N v exp (−ΔW p/ kT ). (6)

На длину свободного пробега и подвижность носителей заряда в основном влияют два физических фактора: рассеяние носителей заряда на тепловых колебаниях атомов кристаллической решетки и рассеяние на ионах примесей. При больших температурах преобладает рассеяние на тепловых колебаниях атомов, и с ростом температуры подвижность уменьшается. В диапазоне низких температур уменьшаются тепловые скорости движения электронов и увеличивается время воздействия электрического поля иона примеси на носители заряда, поэтому подвижность падает. Зависимость μ = f (T ) для разных концентраций примесей N приведена на рис.2. При увеличении концентрации примесей в области низких температур μ уменьшается. В области высоких температур преобладает рассеяние на тепловых колебаниях атомов кристаллической решетки, и подвижность слабо зависит от концентрации примесей.



При большой напряженности электрического поля Е в полупроводнике происходит “разогрев” электронов: их дрейфовая скорость становится соизмеримой со скоростью хаотического теплового движения, что приводит к увеличению числа столкновений. При этом средняя длина свободного пробега уменьшается, а подвижность начиная с Е кр~104 В/см падает (рис.3).

Для собственных полупроводников во всем интервале температур основной вклад в изменение проводимости вносит изменение концентрации носителей заряда:

σ = q μ n N c exp (−ΔW / 2kT ) + q μ p N v exp (−ΔW / 2kT ) = σ0 exp (−ΔW / 2kT ), (7)

где σ0 = q (μ nN c +μ рN v) – коэффициент, слабо зависящий от температуры.

Для примесных полупроводников сильная температурная зависимость проводимости наблюдается в области температур ионизации примесей T s. При этом вклад тепловых электронов и дырок можно не учитывать и проводимость

σn = q μ n N c exp (−ΔW / kT ) = σ0n exp (−ΔW / kT ),

σp = q μ p N v exp (−ΔW / kT ) = σ0n exp (−ΔW / kT ), (8)

где σ0n = nN c и σ0р = рN v – коэффициенты, слабо зависящие от температуры.

В области температур выше T s и ниже Ti проводимость примесных полупроводников слабо зависит от температуры. В этой температурной области работают полупроводниковые диоды, транзисторы и интегральные микросхемы. При Т > Ti примесные полупроводники обычно не используют.

3. Параметры и характеристики терморезисторов

Терморезисторы могут изготавливаться из собственных полупроводников с малой шириной запрещенной зоны ΔW или из примесных полупроводников с высокой температурой активации примеси Ts .

Основной характеристикой терморезистора является температурная зависимость его сопротивления R . Она совпадает с температурной зависимостью удельного сопротивления полупроводника ρ , из которого изготовлен терморезистор. Во всем диапазоне рабочих температур эта зависимость достаточно точно определяется соотношением

R = R ∞exp(B /T ), (9)

где R ¥ - коэффициент, зависящий от исходного материала и конструкции терморезистора, B – коэффициент температурной чувствительности, характеризующий физические свойства материала терморезистора. Его можно найти экспериментально

К, (10)

измерив R ком – сопротивление терморезистора при комнатной температуре Т ком и R 1 – сопротивление при повышенной температуре Т 1.

Рассчитав коэффициент температурной чувствительности, можно найти ширину запрещенной зоны собственного полупроводника из формул (9) и (7) с учетом, что R ~ ρ = 1/σ;

ΔW = 2kB , (11)

или примесного полупроводника n и р - типа из формул (9) и (8)

ΔW n = kB n,

ΔW р = kB р, (12)

где B n, и B р, ‑ коэффициенты температурной чувствительности полупроводников n - и р -типа.

Температурный коэффициент сопротивления терморезистора

https://pandia.ru/text/78/422/images/image006_49.gif" align="left" width="244" height="270"> Статическая вольт-амперная характеристика (ВАХ) терморезистора – это зависимость напряжения на терморезисторе от силы тока в условиях теплового равновесия между терморезистором и окружающей средой. На рис.4 показаны ВАХ терморезисторов с различными коэффициентами температурной чувствительности. Линейность ВАХ при малых токах и напряжениях связана с тем, что выделяемая в терморезисторе мощность недостаточна для существенного изменения его температуры. При увеличении тока, проходящего через терморезистор, выделяемая в нем мощность приводит к повышению температуры, росту концентрации свободных носителей заряда и уменьшению сопротивления. Линейность ВАХ нарушается. При дальнейшем увеличении тока и большой температурной чувствительности терморезистора может наблюдаться падающий участок ВАХ (участок с отрицательным дифференциальным сопротивлением).

Для каждой точки статической ВАХ терморезистора выполняется уравнение теплового баланса между мощностью электрического тока, выделяющейся в терморезисторе, и мощностью, которую он рассеивает в окружающую среду:

P = U 2/R = I 2R = H (T T окр), (15)

где Н [Вт/К]– коэффициент рассеяния терморезистора, численно равный мощности, которую нужно выделить в терморезисторе, чтобы его температура увеличилась на 1 К, Т – температура терморезистора, T окр – температура окружающей среды.

Максимально допустимая температура терморезистора – это температура, при которой еще не происходит необратимых изменений параметров и характеристик терморезистора.

Максимально допустимая мощность рассеяния терморезистора Р max – это мощность, при которой терморезистор, находящийся в спокойном воздухе при температуре 20ºС, разогревается при прохождении тока до максимально допустимой температуры.

Постоянная времени терморезистора t - это время, в течение которого превышение температуры терморезистора над температурой окружающей среды ΔT = (T T окр) уменьшится в е = 2,71 раз по отношению к начальной разности температур терморезистора и окружающей среды (T 0−T окр).

(T T окр) = (T 0−T окр) exp(−t /τ). (16)

Основное количество терморезисторов, выпускаемых промышленностью, изготовлено из оксидных полупроводников, а именно из оксидов металлов переходной группы Периодической системы элементов (от титана до цинка). Электропроводность оксидных полупроводников с преобладающей ионной связью отличается от электропроводности классических ковалентных полупроводников. Для металлов переходной группы характерны незаполненные электронные оболочки и переменная валентность. В результате электропроводность таких оксидов связана с обменом электронами между соседними ионами (“прыжковый” механизм). Энергия, необходимая для стимулирования такого обмена, экспоненциально уменьшается с увеличением температуры. Температурная зависимость сопротивления оксидного терморезистора аппроксимируется уравнением (9) для классических ковалентных полупроводников. Коэффициент температурной чувствительности В (10) отражает интенсивность обмена между соседними ионами, а ΔW – энергию обменной связи (11).

В собственном полупроводнике свободные носители возникают только за счёт разрыва валентных связей, поэтому число дырок равно числу свободных электронов, т.е. n = p = ni, где ni - собственная концентрация. Электропроводность при данной температуре равна

где мn и мp - подвижности электронов и дырок,

e - заряд электрона.

В донорном полупроводнике электропроводность определяется

в случае преобладания акцепторных примесей

Температурная зависимость электропроводности определяется зависимостью концентрации n и подвижности носителей заряда м от температуры.

Температурная зависимость концентрации носителей

Рассмотрим собственный полупроводник.

Для собственного полупроводника концентрация носителей заряда (n = p = ni) может быть выражена соотношением

где - сравнительно слабо зависит от температуры,

Эффективная плотность состояний в зоне проводимости,

Эффективная плотность состояний в валентной зоне,

ДE - ширина запрещённой зоны,

Концентрация электронов в зоне проводимости,

Концентрация дырок в валентной зоне.

Из этих уравнений видно, что концентрация свободных носителей ni зависит от температуры T, ширины запрещённой зоны ДE, значений эффективных масс носителей заряда и. Температурная зависимость концентрации ni при определяется в основном экспоненциальным членом уравнения. Так как C слабо зависит от температуры, то график зависимости ln(ni) от 1/Т должен выражаться прямой линией:

Рассмотрим донорный полупроводник. При низких температурах можно пренебречь числом переходов электронов из валентной зоны в зону проводимости и рассматривать только переход электронов с донорных уровней в зону проводимости.

Температурная зависимость концентрации свободных электронов донорного полупроводника при сравнительно низких температурах и частичной ионизации примесных атомов выражается соотношением:

где Nd - число уровней (атомов) донорной примеси в единице объёма полупроводника (концентрация донорной примеси),

ДEd - глубина залегания донорной примеси.

Из уравнения выше следует

Это область слабой ионизации примеси. Она обозначена цифрой 1 на рисунке 6, на котором показано изменение концентрации n с температурой для донорного полупроводника.

Рис. 6.

При более высокой температуре, когда, все электроны с донорных уровней могут перейти в C-зону. Концентрация электронов в зоне проводимости становится равной концентрации донорной примеси n = Nd.

Эта область температур, при которой происходит полная ионизация примеси, носит название области истощения примеси и на рисунке 6 отмечена цифрой 2.

При дальнейшем росте температуры начинается ионизация атомов основного вещества. Концентрация электронов в C-зоне будет увеличиваться уже за счёт переходов электронов из валентной в C-зону, появляются неосновные носители заряда - дырки в валентной зоне. Когда уровень Ферми достигает середины запрещённой зоны, тогда n = p = ni и полупроводник от примесного переходит к собственному (рис. 6, область 3).

Перейдем к рассмотрению акцепторного полупроводника. При низких температурах можно пренебречь переходом электронов из V- в C-зону и рассматривать только переход электронов из валентной зоны на акцепторные уровни. В этом случае температурная зависимость концентраций свободных дырок выражается в виде

где Na - концентрация акцепторной примеси,

ДEd - энергия активации акцепторной примеси.

Из этого выражения следует

С ростом температуры все акцепторные уровни заполняются электронами, перешедшими из V-зоны. При kT > ДEa наступает истощение примеси, концентрация дырок в V-зоне равна концентрации акцепторной примеси Na.

При дальнейшем повышении температуры возникает всё больше собственных носителей за счёт перехода электронов из V- в C-зоны и при некоторой температуре проводимость полупроводника из примесной превращается в собственную.

Как мы уже видели, удельная проводимость выражается формулой

где n - концентрация носителей заряда, определяющих проводящие свойства данного тела, а u - подвижность этих носителей. Носителями заряда могут быть как электроны, так и дырки. Интересно отметить, что, хотя, как известно, у большинства металлов свободными носителями заряда являются электроны, у некоторых металлов роль свободных носителей заряда выполняют дырки. Типичными представителями металлов с дырочной проводимостью являются цинк, бериллий и некоторые другие.

Для выяснения зависимости проводимости от температуры необходимо знать температурную зависимость концентрации свободных носителей и их подвижности. В металлах концентрация свободных носителей заряда не зависит от температуры. Поэтому изменение проводимости металлов в зависимости от температуры полностью определяется температурной зависимостью подвижности носителей. В полупроводниках, напротив, концентрация носителей резко зависит от температуры, а температурные изменения подвижности практически оказываются незаметными. Однако в тех областях температур, где концентрация носителей оказывается постоянной (область истощения и область насыщения примесей), ход температурной зависимости проводимости полностью определяется температурным изменением подвижности носителей.

Значение же самой подвижности определяется процессами рассеяния носителей на различных дефектах кристаллической решетки, то есть изменением скорости направленного движения носителей при их взаимодействии с различными дефектами. Наиболее существенным является взаимодействие носителей с ионизированными атомами различных примесей и с тепловыми колебаниями решетки кристалла. В различных областях температуры процессы рассеяния, обусловленные этими взаимодействиями, сказываются по-разному.

В области низких температур, когда тепловые колебания атомов столь малы, что ими можно пренебречь, основное значение имеет рассеяние на ионизированных атомах примеси. В области же высоких температур, когда в процессе тепловых колебаний атомы решетки значительно смещаются от положения устойчивого равновесия в кристалле, на первый план выступает тепловое рассеяние.

Рассеяние на ионизированных атомах примеси . В примесных полупроводниках концентрация примесных атомов во много раз превосходит концентрацию примесей в металлах. Даже при достаточно низкой температуре большая часть примесных атомов находится в ионизированном состоянии, что представляется вполне естественным, поскольку само происхождение проводимости полупроводников связано в первую очередь с ионизацией примесей. Рассеяние носителей на ионах примеси оказывается гораздо более сильным, чем рассеяние на нейтральных атомах. Объясняется это тем, что если рассеяние носителя на нейтральном атоме происходит при непосредственном столкновении, то для рассеяния на ионизированном атоме достаточно носителю попасть в область электрического поля, создаваемого ионом (рис. 28). Когда электрон пролетает сквозь область электрического поля, создаваемого положительным ионом, траектория его полета претерпевает изменение, как показано на рисунке; при этом скорость его направленного движения υ Е, приобретенная благодаря воздействию внешнего поля, уменьшится до Если электрон проходит достаточно близко около иона, то после рассеяния направление движения электрона может оказаться вообще противоположным направлению действия внешнего электрического поля.

Рассматривая задачу о рассеянии заряженных частиц на заряженных центрах, выдающийся английский физик Э. Резерфорд пришел к выводу, что длина свободного пробега частиц пропорциональна четвертой степени их скорости:

Применение этой зависимости к рассеянию носителей в полупроводниках привело к очень интересному и, на первый взгляд, неожиданному результату: подвижность носителей в области низких температур должна с повышением температуры расти. В самом деле, подвижность носителей оказывается пропорциональной кубу скорости их движения:


В то же время средняя кинетическая энергия носителей заряда в полупроводниках пропорциональна температуре а, значит, средняя тепловая скорость пропорциональна корню квадратному из Следовательно, подвижность носителей находится в следующей зависимости от температуры:

В области низких температур, когда рассеяние на ионизированных примесях играет основную роль и когда тепловыми колебаниями атомов решетки можно пренебречь, подвижность носителей растет по мере повышения температуры пропорционально (левая ветвь кривой u(Т) на рисунке 29). Качественно такая зависимость вполне объяснима: чем больше тепловая скорость носителей, тем меньше времени находятся они в поле ионизированного атома и тем меньше искажение их траектории. Благодаря этому возрастает длина свободного пробега носителей и увеличивается их подвижность.

Рассеяние на тепловых колебаниях . С повышением температуры средняя скорость теплового движения носителей возрастает настолько, что вероятность их рассеяния на ионизированных примесях становится очень малой. Вместе с этим амплитуда тепловых колебаний атомов решетки при этом возрастает, так что на первый план выступает рассеяние носителей на тепловых колебаниях. Благодаря росту рассеяния на тепловых колебаниях уменьшается по мере нагрева полупроводника длина свободного пробега носителей и, следовательно, их подвижность.

Конкретный ход зависимости в области высоких температур для различных полупроводников неодинаков. Он определяется природой полупроводника, шириной запрещенной зоны, концентрацией примеси и некоторыми другими факторами. Однако для типичных ковалентных полупроводников, в частности для германия и кремния, при не слишком больших концентрациях примеси зависимость u(T) имеет вид:


(см. правую ветвь кривой на рисунке 29).

Итак, подвижность носителей в полупроводниках в области низких температур растет прямо пропорционально а в области высоких температур падает обратно пропорционально

Зависимость проводимости полупроводника от температуры . Зная ход температурной зависимости подвижности и концентрации носителей в полупроводниках, можно установить характер температурной зависимости проводимости полупроводников. Схематически зависимость показана на рисунке 30. Ход этой кривой очень близок к ходу кривой зависимости приведенной на рисунке 25. Поскольку зависимость концентрации носителей от температуры гораздо сильнее температурной зависимости их подвижности, то в областях примесной проводимости (участок ab) и собственной проводимости (участок cd) зависимость удельной проводимости σ(T) практически полностью определяется ходом зависимости концентрации носителей от температуры. Углы наклона этих участков графика зависят соответственно от энергии ионизации атомов донорной примеси и от ширины запрещенной зоны полупроводника. Тангенс угла наклона γ n пропорционален энергии отрыва пятого валентного электрона атома донорной примеси. Поэтому, получив экспериментально график изменения проводимости полупроводника при нагреве на примесном участке ab, можно определить значение энергии активации донорного уровня, то есть энергетическое расстояние донорного уровня W d от дна зоны проводимости (см. рис. 20). Тангенс угла наклона γ i пропорционален энергии перехода электрона из валентной зоны в зону проводимости, то есть энергии создания собственных носителей в полупроводнике. Таким образом, получив экспериментально ход зависимости проводимости от температуры на собственном участке cd, можно определить ширину запрещенной зоны W g (см. рис. 17). Величины W d и W g являются важнейшими характеристиками полупроводника.

Основное различие между зависимостями σ(T) и n(T) наблюдается на участке bc, расположенном между температурой истощения примесей T s и температурой перехода к собственной проводимости T i . Этот участок соответствует ионизированному состоянию всех примесных атомов, а для создания собственной проводимости энергия тепловых колебаний оказывается еще недостаточной. Поэтому концентрация носителей, будучи практически равной концентрации примесных атомов, не изменяется при увеличении температуры. Ход температурной зависимости проводимости на этом участке определяется ходом зависимости от температуры подвижности носителей. В большинстве случаев при умеренной концентрации примеси основным механизмом рассеяния носителей в этой области температур является рассеяние на тепловых колебаниях решетки. Этот механизм обусловливает уменьшение подвижности носителей и, следовательно, проводимости полупроводников с ростом температуры на участке bc.

В вырожденных полупроводниках благодаря большой концентрации примесей, обусловливающей перекрытие электрических полей ионов, рассеяние носителей на ионизированных атомах примеси сохраняет основное значение вплоть до высоких температур. А для этого механизма рассеяния как раз и характерно увеличение подвижности носителей с ростом температуры.