Гладкий эндоплазматический ретикулум строение и функции. Эндоплазматическая сеть. Эндоплазматическая сеть: строение и функции

Что общего у гнилого яблока и головастика? Процесс гниения фруктов и процесс превращения головастика в лягушку связан с одним и тем же феноменом - автолизом. Руководят им уникальные структуры клеток - лизосомы. Крошечные лизосомы размером от 0,2 до 0,4 мкм разрушают не только другие органоиды, но даже целые ткани и органы. Они содержат от 40 до 60 разных лизирующих ферментов, под действием которых ткани буквально плавятся на глазах. О структуре и функциях наших внутренних биохимических лабораторий: лизосом, аппарата Гольджи и эндоплазматической сети, - вы узнаете в нашем уроке. Также мы поговорим о клеточных включениях - особом типе клеточных структур.

Тема: Основы цитологии

Урок: Строение клетки. Эндоплазматическая сеть. Комплекс Гольджи.

Лизосомы. Клеточные включения

Мы продолжаем изучать органоиды клетки.

Все органоиды делятся на мембранные и немембранные .

Немембранные органоиды мы рассмотрели на предыдущем занятии, напомним, что к ним относятся рибосомы, клеточный центр и органоиды движения.

Среди мембранных органоидов различают одномембранные и двумембранные .

В этой части курса мы рассмотрим одномембранные органоиды: эндоплазматическую сеть, аппарат Гольджи и лизосомы .

Кроме этого, мы рассмотрим включения - непостоянные образования клетки, которые возникают и исчезают в процессе жизнедеятельности клетки.

Эндоплазматическая сеть

Одним из самых важных открытий, сделанных с помощью электронного микроскопа, было обнаружение сложной системы мембран, пронизывающей цитоплазму всех эукариотических клеток. Эта сеть мембран в дальнейшем получила название ЭПС (эндоплазматической сети) (рис. 1) или ЭПР (эндоплазматического ретикулума). ЭПС представляет систему трубочек и полостей, пронизывающей цитоплазму клетки.

Рис. 1. Эндоплазматическая сеть

Слева - среди других органоидов клетки. Справа - отдельно выделенная

Мембраны ЭПС (рис. 2) имеют такое же строение, как и клеточная или плазматическая мембрана (плазмалемма). ЭПС занимает до 50% объема клетки. Она нигде не обрывается и не открывается в цитоплазму.

Различают гладкую ЭПС и шероховатую , или гранулярную ЭПС (рис. 2). На внутренних мембранах шероховатой ЭПС располагаются рибосомы - здесь идет синтез белков.

Рис. 2. Виды ЭПС

Шероховатая ЭПС (слева) несет на мембранах рибосомы и отвечает за синтез белка в клетке. Гладкая ЭПС (справа) не содержит рибосом и отвечает за синтез углеводов и липидов.

На поверхности гладкой ЭПС (рис. 2) идет синтез углеводов и липидов. Вещества, синтезированные на мембранах ЭПС, переносятся в трубочки и затем транспортируются к местам назначения, где депонируются или используются в биохимических процессах.

Шероховатая ЭПС лучше развита в клетках, которые синтезируют белки для нужд организма, например, белковые гормоны эндокринной системы человека. А гладкая ЭПС - в тех клетках, которые синтезируют сахара и липиды.

В гладкой ЭПС накапливаются ионы кальция (важные для регуляции всей функций клеток и целого организма).

Структуру, известную сегодня как комплекс или аппарат Гольджи (АГ) (рис. 3), впервые обнаружил в 1898 году итальянский ученый Камилло Гольджи ().

Подробно изучить строение комплекса Гольджи удалось значительно позже с помощью электронного микроскопа. Эта структура содержится практически во всех эукариотических клетках, и представляет собой стопку уплощенных мембранных мешочков, т. н. цистерн, и связанную с ними систему пузырьков, называемых пузырьками Гольджи .

Рис. 3. Комплекс Гольджи

Слева - в клетке, среди других органоидов.

Справа - комплекс Гольджи с отделяющимися от него мембранными пузырьками

Во внутриклеточных цистернах накапливаются вещества, синтезированные клеткой, т. е. белки, углеводы, липиды.

В этих же цистернах вещества, поступившие из ЭПС , претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и доставляются к тем местам клетки, где они необходимы. Они участвуют в достройке клеточной мембраны или выделяются наружу (секретируются ) из клетки.

Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с её каналами.

Все вещества, синтезированные на мембранах ЭПС (рис. 2), переносятся в комплекс Гольджи в мембранных пузырьках , которые отпочковываются от ЭПС и сливаются затем с комплексом Гольджи, где они претерпевают дальнейшие изменения.

Одна из функций комплекса Гольджи - сборка мембран. Вещества, из которых состоят мембраны - белки и липиды, как вы уже знаете, - поступают в комплекс Гольджи из ЭПС.

В полостях комплекса собираются участки мембран, из которых образуются особые мембранные пузырьки (рис. 4), они передвигаются по цитоплазме в те места, где необходима достройка мембраны.

Рис. 4. Синтез мембран в клетке комплексом Гольджи (см. видео)

В комплексе Гольджи синтезируются практически все полисахариды, необходимые для построения клеточной стенки клеток растений и грибов. Здесь они упаковываются в мембранные пузырьки, доставляются к клеточной стенке и сливаются с ней.

Таким образом, основные функция комплекса (аппарата) Гольджи - химическое превращение синтезированных в ЭПС веществ, синтез полисахаридов, упаковка и транспорт органических веществ в клетке, формирование лизосомы.

Лизосомы (рис. 5) обнаружены у большинства эукариотических организмов, но особенно много их в клетках, которые способны к фагоцитозу. Они представляют собой одномембранные мешочки, наполненные гидролитическими или пищеварительными ферментами, такими как липазы, протеазы и нуклеазы , т. е. ферменты, которые расщепляют жиры, белки и нуклеиновые кислоты.

Рис. 5. Лизосома - мембранный пузырек, содержащий гидролитические ферменты

Содержимое лизосом имеет кислую реакцию - для их ферментов характерен низкий оптимум pH. Мембраны лизосомы изолируют гидролитические ферменты, не давая им разрушать другие компоненты клетки. В клетках животных лизосомы имеют округлую форму, их диаметр - от 0,2 до 0,4 микрон.

В растительных клетках функцию лизосом выполняют крупные вакуоли. В некоторых растительных клетках, особенно погибающих, можно заметить небольшие тельца, напоминающие лизосомы.

Скопление веществ, которые клетка депонирует, использует для своих нужд, или хранит для выделения вовне, называют клеточными включениями .

Среди них зерна крахмала (запасной углевод растительного происхождения) или гликогена (запасной углевод животного происхождения), капли жира , а также гранулы белков .

Эти запасные питательные вещества располагаются в цитоплазме свободно и не отделены от неё мембраной.

Функции ЭПС

Одна из самых важных функций ЭПС - синтез липидов . Поэтому ЭПС обычно представлена в тех клетках, где интенсивно происходит этот процесс.

Как происходит синтез липидов? В клетках животных липиды синтезируются из жирных кислот и глицерина, которые поступают с пищей (в клетках растений они синтезируются из глюкозы). Синтезированные в ЭПС липиды передаются в комплекс Гольджи, где «дозревают».

ЭПС представлена в клетках коры надпочечников и в половых железах, поскольку здесь синтезируются стероиды, а стероиды - гормоны липидной природы. К стероидам относится мужской гормон тестостерон, и женский гормон эстрадиол.

Ещё одна функция ЭПС - участие в процессах детоксикации. В клетках печени шероховатая и гладкая ЭПС участвуют в процессах обезвреживания вредных веществ, поступающих в организм. ЭПС удаляет яды из нашего организма.

В мышечных клетках присутствуют особые формы ЭПС - саркоплазматический ретикулум . Саркоплазматический ретикулум - один из видов эндоплазматической сети, который присутствует в поперечнополосатой мышечной ткани. Его основной функцией является хранение ионов кальция, и введение их в саркоплазму - среду миофибрилл.

Секреторная функция комплекса Гольджи

Функцией комплекса Гольджи является транспорт и химическая модификация веществ. Особенно хорошо это видно в секреторных клетках.

В качестве примера можно привести клетки поджелудочной железы, синтезирующие ферменты панкреатического сока, который затем выходит в проток железы, открывающийся в двенадцатиперстную железу.

Исходным субстратом для ферментов служат белки, поступающие в комплекс Гольджи из ЭПС. Здесь с ними происходят биохимические превращения, они концентрируются, упаковываются в мембранные пузырьки и перемещаются к плазматической мембране секреторной клетки. Затем они выделяются наружу посредством экзоцитоза.

Ферменты поджелудочной железы секретируются в неактивной форме, чтобы они не разрушали клетку, в которой образуются. Неактивная форма фермента называется проферментом или энзимогеном . Например, фермент трипсин, образуется в неактивной форме в виде трипсиногена в поджелудочной железе и переходит в свою активную форму - трипсин в кишечнике.

Комплексом Гольджи синтезируется также важный гликопротеин - муцин . Муцин синтезируется бокаловидными клетками эпителия, слизистой оболочки желудочно-кишечного тракта и дыхательных путей. Муцин служит барьером, защищающим расположенные под ним эпителиальные клетки от разных повреждений, в первую очередь, механических.

В желудочно-кишечном тракте эта слизь защищает нежную поверхность эпителиальных клеток от действия грубого комка пищи. В дыхательных путях и желудочно-кишечном тракте муцин защищает наш организм от проникновения патогенов - бактерий и вирусов.

В клетках кончика корня растений комплекс Гольджи секретирует мукополисахаридную слизь, которая облегчает продвижение корня в почве.

В железах на листьях насекомоядных растений, росянки и жирянки (рис. 6), аппарат Гольджи производит клейкую слизь и ферменты, с помощью которых эти растения ловят и переваривают добычу.

Рис. 6. Клейкие листья насекомоядных растений

В клетках растений комплекс Гольджи также участвует в образовании смол, камедей и восков.

Автолиз

Автолиз - это саморазрушение клеток, возникающее вследствие высвобождения содержимого лизосом внутри клетки.

Благодаря этому лизосомы в шутку называют «орудиями самоубийства». Автолиз представляет собой нормальное явление онтогенеза, он может распространяться как на отдельные клетки, так и на всю ткань или орган, как это происходит при резорбции хвоста головастика во время метаморфоза, т. е. при превращении головастика в лягушку (рис. 7).

Рис. 7. Резорбция хвоста лягушки благодаря автолизу в ходе онтогенеза

Автолиз происходит в мышечной ткани, остающейся долго без работы.

Кроме этого, автолиз наблюдается у клеток после гибели, поэтому вы могли наблюдать, как продукты питания сами портятся, если они не были заморожены.

Таким образом, мы рассмотрели основные одномембранные органоиды клетки: ЭПС, комплекс Гольджи и лизосомы, выяснили их функции в процессах жизнедеятельности отдельной клетки и организма в целом. Установили связь между синтезом веществ в ЭПС, транспортом их в мембранных пузырьках в комплекс Гольджи, «дозреванием» веществ в комплексе Гольджи и выделением их из клетки при помощи мембранных пузырьков, в том числе лизосом. Также мы говорили о включениях - непостоянных структурах клетки, которые представляют собой скопления органических веществ (крахмала, гликогена, капель масла или гранул белка). Из приведенных в тексте примеров мы можем сделать вывод о том, что процессы жизнедеятельности, которые происходят на клеточном уровне, отражаются на функционировании целого организма (синтез гормонов, автолиз, накопление питательных веществ).

Домашнее задание

1. Что такое органоиды? Чем органоиды отличаются от клеточных включений?

2. Какие группы органоидов бывают в клетках животных и растений?

3. Какие органоиды относятся к одномембранным?

4. Какие функции выполняет ЭПС в клетках живых организмов? Какие виды ЭПС выделяют? С чем это связано?

5. Что такое комплекс (аппарат) Гольджи? Из чего он состоит? Каковы его функции в клетке?

6. Что такое лизосомы? Для чего они нужны? В каких клетках нашего организма они активно функционируют?

7. Как связаны друг с другом ЭПС, комплекс Гольджи и лизосомы?

8. Что такое автолиз? Когда и где он происходит?

9. Обсудите с друзьями явление автолиза. Каково его биологическое значение в онтогенезе?

2. YouTube ().

3. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. - 5-е изд., стереотип. - Дрофа, 2010. - 388 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.

Немного истории

Клетка считается наименьшей структурной единицей любого организма, однако и она также из чего-то состоит. Одним из её компонентов и является эндоплазматическая сеть. Более того, ЭПС является обязательной составляющей любой клетки в принципе (кроме некоторых вирусов и бактерий). Открыта она американским учёным К. Портером ещё в 1945 году. Именно он заметил системы канальцев и вакуолей, которые как бы скопились вокруг ядра. Также Портером было замечено, что размеры ЭПС в клетках разных существ и даже органов и тканей одного организма не аналогичны друг другу. Он пришёл к выводу о том, что это связано с функциями той или иной клетки, степенью её развития, а также стадией дифференцировки. Например, у человека очень хорошо развита ЭПС в клетках кишечника, слизистых и надпочечников.

Понятие

ЭПС - система канальцев, трубочек, пузырьков и мембран, которые расположены в цитоплазме клетки.

Эндоплазматическая сеть: строение и функции

Строение

Во-первых, это транспортная функция. Как и цитоплазма, эндоплазматическая сеть обеспечивает обмен веществ между органоидами. Во-вторых, ЭПС совершает структурирование и группировку содержимого клетки, разбивая его на определённые секции. В-третьих, важнейшей функцией является синтез белка, который осуществляется в рибосомах шероховатой эндоплазматической сети, а также синтез углеводов и липидов, который происходит на мембранах гладкой ЭПС.

Строение ЭПС

Всего существует 2 типа эндоплазматической сети: зернистая (шероховатая) и гладкая. Функции, выполняемые данной составляющей, зависят именно от типа самой клетки. На мембранах гладкой сети находятся отделы, вырабатывающие ферменты, которые затем участвуют в обмене веществ. Шероховатая эндоплазматическая сеть содержит на своих мембранах рибосомы.

Краткая информация о других наиболее важных составляющих клетки

Цитоплазма: строение и функции

Изображение Строение Функции

Является жидкостью в клетке. Именно в ней находятся все органоиды (в том числе и аппарат Гольджи, и эндоплазматическая сеть, и многие другие) и ядро с его содержимым. Относится к обязательным компонентам и не является органоидом как таковым. Основной функцией является транспортная. Именно благодаря цитоплазме происходит взаимодействие всех органоидов, их упорядочение (складываются в единую систему) и протекание всех химических процессов.

Клеточная мембрана: строение и функции

Изображение Строение Функции

Молекулы фосфолипидов и белков, образуя два слоя, составляют мембрану. Она представляет собой тончайшую плёнку, окутывающую всю клетку. Неотъемлемым ее компонентом также являются полисахариды. А у растений снаружи она ещё покрыта тонким слоем клетчатки.

Основной функцией клеточной мембраны является ограничение внутреннего содержимого клетки (цитоплазмы и всех органоидов). Поскольку в ней содержатся мельчайшие поры, она обеспечивает транспорт и обмен веществ. Может также являться катализатором при осуществлении каких-то химических процессов и рецептором при возникновении внешней опасности.

Ядро: строение и функции

Изображение Строение Функции

Имеет либо овальную, либо шаровидную форму. Содержит в себе особые молекулы ДНК, которые в свою очередь несут наследственную информацию всего организма. Само ядро снаружи покрыто особой оболочкой, в которой есть поры. Содержит также ядрышки (небольшие тельца) и жидкость (сок). Вокруг этого центра и располагается эндоплазматическая сеть.

Именно ядром регулируются абсолютно все процессы, происходящие в клетке (обмен веществ, синтез и т.д.). И именно этот компонент является основным носителем наследственной информации всего организма.

В ядрышках происходит синтез белка и молекул РНК.

Рибосомы

Являются органоидами, обеспечивающими основной синтез белка. Могут находиться как в свободном пространстве цитоплазмы клетки, так и в комплексе с другими органоидами (эндоплазматическая сеть, например). Если рибосомы расположены на мембранах шероховатой ЭПС (находясь на наружных стенках мембран, рибосомы создают шероховатости), эффективность синтеза белка возрастает в несколько раз. Это было доказано многочисленными научными экспериментами.

Комплекс Гольджи

Органоид, состоящий из некоторых полостей, постоянно выделяющих различных размеров пузырьки. Накопленные вещества также использует для нужд клетки и организма. Комплекс Гольджи и эндоплазматическая сеть нередко расположены рядом.

Лизосомы

Органоиды, окружённые специальной мембраной и выполняющие пищеварительную функцию клетки, называются лизосомами.

Митохондрии

Органоиды, окружённые несколькими мембранами и выполняющие энергетическую функцию, то есть обеспечивающие синтез молекул АТФ и распределяющие полученную энергию по клетке.

Пластиды. Виды пластидов

Хлоропласты (функция фотосинтеза);

Хромопласты (накапливание и сохранение каротиноидов);

Лейкопласты (накапливание и хранение крахмала).

Органоиды, предназначенные для передвижения

Они также совершают какие-то движения (жгутики, реснички, длинные отростки и т.п.).

Клеточный центр: строение и функции

ЭПР представляет собой систему уплощенных мембранных мешочков, канальцев, цистерн, пузырьков. Вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Выделяют два типа ЭПР: гранулярный (шероховатый) и агранулярный (гладкий).

Мембраны гранулярного эндоплазматического ретикулума со стороны гиалоплазмы покрыты рибосомами.

Функции гранулярного ЭПР:

    Обеспечение биосинтеза белков, предназначенных для выведения из клетки;

    Сегрегация (отделение) вновь синтезированных белковых молекул от гиалоплазмы;

    Биосинтез мембранных белков;

    Начальные посттрансляционные изменения белков.

Гладкий ЭПР также представлен мембранами, образующими мелкие вакуоли и трубки, канальцы, которые могут ветвиться, сливаться друг с другом. В отличие от гранулярного на мембранах гладкого ЭПР нет рибосом. Гладкий и шероховатый ЭПР связаны между собой и переходят друг в друга.

Функциями гладкого ЭПР является :

    Синтез и метаболизм липидов (в том числе мембранных);

    Метаболизм гликогена. Гликоген откладывается в гладком ЭПР клеток печени и мышечных волокон;

    Синтез холестерина и стероидных гормонов;

    Деградация и детоксикация различных вредных веществ (канцерогены, ядовитые вещества, гормональные препараты и др. лекарственные вещества, алкоголь);

    Депонирование ионов Са 2+ (саркоплазматический ретикулум).

Аппарат Гольджи (комплекс Гольджи, пластинчатый комплекс).

Комплекс Гольджи представляет собой скопление мембранных структур в виде стопки (диктиосома). Между стопками располагаются тонкие прослойки гиалоплазмы. В секретирующих клетках аппарат Гольджи обычно поляризован: с одной стороны мембранные мешочки непрерывно образуются (цис-участок), а с другой – происходит отделение вакуолей (транс-участок). Цистерны аппарата Гольджи связаны с канальцами ЭПР. В некоторых клетках аппарат Гольджи имеет вид сложных сетей.

Функции аппарата Гольджи:

    Синтез полисахаридов, их взаимосвязь с белками, приводящая к образованию гликопротеинов (например, гликокаликса);

    Модификация белков в аппарате Гольджи. Белки по мере движения по цистернам аппарата Гольджи «созревают», т.е. подвергаются модификациям: некоторые их аминокислоты фосфорилируются, ацетилируются и др. Подвергаются модификации и олигосахаридные цепи белков. При этом возникает специальный комплекс олигосахаридов;

    Выведение готовых секретов за пределы клетки. Синтезированный на рибосомах и модифицированный в АГ экспортируемый белок упаковывается в вакуоли на транс-участке диктиосомы. Такие вакуоли движутся к поверхности клетки, соприкасаются с плазматический мембраной и сливаются с ней (экзоцитоз). Таким образом, содержимое вакуолей оказывается за пределами клетки;

    Сортировка белков в аппарате Гольджи.

Лизосомы.

Представляют собой пузырьки, ограниченные одиночной мембраной с разнородным содержимым внутри. Все лизосомы содержат ферменты гидролазы (известно примерно 40 видов), что позволяет им участвовать в процессах внутриклеточного переваривания. По морфологии можно выделить первичные, вторичные лизосомы, аутофагосомы и телолизосомы (остаточные тельца).

Первичные лизосомы – мелкие мембранные пузырьки 50-100 нм, содержащие набор гидролаз. Это неактивные структуры, еще не вступившие в процессы расщепления субстратов.

Вторичные лизосомы – продукт слияния первичных лизосом с фагоцитарными, или пиноцитозными вакуолями. При этом гидролазы первичной вакуоли получают доступ к субстратам, которые они начинают расщеплять.

Аутофагосомы (аутолизосомы) – вторичные лизосомы, выполняющие функцию уничтожения измененных, либо отслуживших свой срок клеточных компонентов.

Телолизосомы (остаточные тельца) – вторичные лизосомы, содержащие не до конца переваренные продукты обмена, либо пигментные вещества.

Клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.

Схематическое представление клеточного ядра, эндоплазматического ретикулума и комплекса Гольджи.
(1) Ядро клетки.
(2) Поры ядерной мембраны.
(3) Гранулярный эндоплазматический ретикулум.
(4) Агранулярный эндоплазматический ретикулум.
(5) Рибосомы на поверхности гранулярного эндоплазматического ретикулума.
(6) Макромолекулы
(7) Транспортные везикулы.
(8) Комплекс Гольджи.
(9) Цис-Гольджи
(10) Транс-Гольджи
(11) Цистерны Гольджи

История открытия

Впервые эндоплазматический ретикулум был обнаружен американским учёным К. Портером в 1945 году посредством электронной микроскопии.

Строение

Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.

Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации . Нити, образующие эндоплазматический ретикулум, имеют в поперечнике 0,05-0,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев, составляет около 50 ангстрем (5 нм , 0,005 мкм). Эти структуры содержат ненасыщенные фосфолипиды , а также некоторое количество холестерина и сфинголипидов . В их состав также входят белки.

Трубочки, диаметр которых колеблется в пределах 0,1-0,3 мкм, заполнены гомогенным содержимым. Их функция - осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.

Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.

Выделяют два вида ЭПР:

  • гранулярный эндоплазматический ретикулум;
  • агранулярный (гладкий) эндоплазматический ретикулум.

На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом , которые отсутствуют на поверхности агранулярного ЭПР.

Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке.

Функции эндоплазматического ретикулума

При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов и стероидов . Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция , который является, в частности, медиатором сокращения мышечной клетки . В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума - саркоплазматическая сеть .

Функции агранулярного эндоплазматического ретикулума

Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма . Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, нейтрализации ядов и запасании кальция. Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов , жирных кислот и стероидов. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.

Синтез гормонов

К гормонам, которые образуются в агранулярной ЭПС, принадлежат, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников. Клетки яичек и яичников, ответственные за синтез гормонов, содержат большое количество агранулярного эндоплазматического ретикулума.

Накопление и преобразование углеводов

Углеводы в организме накапливаются в печени в виде гликогена . Посредством гликолиза гликоген в печени трансформируется в глюкозу , что является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови.

Нейтрализация ядов

Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют к молекулам токсичных веществ гидрофильные радикалы, в результате чего повышается растворимость токсичных веществ в крови и моче, и они быстрее выводятся из организма. В случае непрерывного поступления ядов, медикаментов или алкоголя образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.

Роль ЭПС как депо кальция

Концентрация ионов кальция в ЭПС может достигать 10 −3 моль , в то время как в цитозоле составляет порядка 10 −7 моль (в состоянии покоя). Под действием инозитолтрифосфата и некоторых других стимулов кальций высвобождается из ЭПС путем облегченной диффузии. Возврат кальция в ЭПС обеспечивается активным транспортом . При этом мембрана ЭПС обеспечивает активный перенос ионов кальция против градиентов концентрации больших порядков. И приём, и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи с физиологическими условиями.

Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как активация или инактивация ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток иммунной системы.

Саркоплазматический ретикулум

Особую форму агранулярного эндоплазматического ретикулума, саркоплазматический ретикулум, представляет собой ЭПС в мышечных клетках, в которых ионы кальция активно закачиваются из цитоплазмы в полости ЭПР против градиента концентрации в невозбуждённом состоянии клетки и освобождаются в цитоплазму для инициации сокращения.

Функции гранулярного эндоплазматического ретикулума

Гранулярный эндоплазматический ретикулум имеет две функции: синтез белков и производство мембран.

Синтез белков

Белки, производимые клеткой, синтезируются на поверхности рибосом, которые могут быть присоединены к поверхности ЭПС. Полученные полипептидные цепочки помещаются в полости гранулярного эндоплазматического ретикулума (куда попадают и полипептидные цепочки, синтезированные в цитозоле), где впоследствии правильным образом обрезаются и сворачиваются. Таким образом, линейные последовательности аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трёхмерную структуру, после чего повторно перемещаются в цитозоль.

Синтез мембран

Производством фосфолипидов ЭПР расширяет собственную поверхность мембраны, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.

См. также

  • Ретикулоны - белки эндоплазматического ретикулума.

Wikimedia Foundation . 2010 .


Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему плоских мембранных цистерн и мембранных трубочек. Мембранные цистерны и трубочки соединяются между собой и образуют мембранную структуру с общим содержимым. Это позволяет изолировать определенные участки цитоплазмы от основной ниалоплазмы и реализовать в них некоторые специфические клеточные функции. В результате происходит функциональная дифференцировка различных зон цитоплазмы. Строение мембран ЭПС соответствует жидкостно-мозаичной модели. Морфологически различают 2 вида ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Гладкая ЭПС представлена системой мембранных трубочек. Шероховатая ЭПС является системой мембранных цистерн. На наружной стороне мембран шероховатой ЭПС находятся рибосомы. Оба вида ЭПС находятся в структурной зависимости – мембраны одного вида ЭПС могут переходить в мембраны другого вида.

Функции эндоплазматической сети:

1.Гранулярная ЭПС участвует в синтезе белков, в каналах образуются сложные молекулы белков.

2.Гладкая ЭПС участвует в синтезе липидов, углеводов.

3.Транспорт органических веществ в клетку (по каналам ЭПС).

4.Делит клетку на секции, – в которых могут одновременно идти разные химические реакции и физиологические процессы.

Гладкая ЭПС является полифункциональной. В ее мембране имеются белки-0ферменты, которые катализируют реакции синтеза мембранных липидов. В гладкой ЭПС синтезируются и некоторые не мембранные липиды (стероидные гормоны). В состав мембраны этого типа ЭПС включены переносчики Са2+. Они транспортируют кальций по градиенту концентрации (пассивный транспорт). При пассивном транспорте происходит синтез АТФ. С их помощью в гладкой ЭПС регулируется концентрация Са2+ в гиалоплазме. Этот параметр важен для регуляции работы микротрубочек и микрофибрилл. В мышечных клетках гладкая ЭПС регулирует сокращение мускулатуры. В ЭПС происходит детоксикация многих вредных для клетке веществ (лекарственные препараты). Гладкая ЭПС может образовывать мембранные пузырьки, или микротельца. Такие пузырьки осуществляют специфические окислительные реакции изолированно от ЭПС.

Главной функцией шероховатой ЭПС является синтез белков. Это определяется наличием на мембранах рибосом. В мембране шероховатой ЭПС имеются специальные белки рибофорины. Рибосомы взаимодействуют с рибофоринами и фиксируются на мембране в определенной ориентации. Все белки синтезирующиеся в ЭПС имеют концевой сигнальный фрагмент. На рибосомах шероховатой ЭПС идет синтез белков.

В цистернах шероховатой ЭПС происходит посттрансляционная модификация белков.

Цепни.

Класс ленточные черви (Cestoidea)

Болезни: свин ц – тениоз, быч цеп – тениаринхоз, эхин – эхинококкоз, карлик цепень – гименолипедоз

Широкий лентец .Diphyllobothrium latum

Заболевание: дифиллоботриоз.

Особенности: сам крупн. 10-20 м, на скоклексы 2 ботрии – присасыват щели, полов клоака на вентр стороне членика. Яйца овальные, желто-коричневой окраски.

Окончательные хозяева: человек и животные, которые питаются рыбой.Промежуточные хозяева: Пресноводные рачки (циклопы).

Пресноводные рыбы (хищные рыбы – резервуар)

Жизненный цикл:яйца-вода-корацидий-заглат циклопом-онкосфера-проник ч/з стенку киш-полость тела-процеркоид. Циклоп с финнами-преснов рыба-процеркоид проник в мышцы-плероцеркоид. Рыба с плероцеркоидом-киш-к осн хоз-марита.

Продолжительность жизни – до 25 лет. нвазионная форма: финна типа плероцеркоид.

Способ заражения: per os.Путь заражения: алиментарный (через мясо пресноводной рыбы, свежепросоленную икру).

Патогенная форма: половозрелая особь.Локализация: тонкая кишка.

Патогенное действие:Токсико-аллергическое. Продукты метаболизма половозрелой особи отравляют организм человека, сенсибилизируют его и вызывают аллергию.