Падение тел. Движение тела, брошенного под углом к горизонту Движение под углом к

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила -- сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения; проекции ускорения на координатные оси ах = 0, ау = - g.

Рисунок 1. Кинематические характеристики тела, брошенного под углом к горизонту

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

где $v_0$ - начальная скорость, ${\mathbf \alpha }$ - угол бросания.

При нашем выборе начала координат начальные координаты (рис. 1) $x_0=y_0=0$. Тогда получим:

(1)

Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета - это значение координаты х в конце полета, т.е. в момент времени, равный $t_0$. Подставляя значение (2) в первую формулу (1), получаем:

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

и подставить его во второе уравнение. Тогда получим:

Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания $\alpha $ и его функции -- здесь просто константы, т.е. постоянные числа.

Тело брошено со скоростью v0 под углом ${\mathbf \alpha }$ к горизонту. Время полета $t = 2 с$. На какую высоту Hmax поднимется тело?

$$t_В = 2 с$$ $$H_max - ?$$

Закон движения тела имеет вид:

$$\left\{ \begin{array}{c} x=v_{0x}t \\ y=v_{0y}t-\frac{gt^2}{2} \end{array} \right.$$

Вектор начальной скорости образует с осью ОХ угол ${\mathbf \alpha }$. Следовательно,

\ \ \

С вершины горы бросают под углом = 30${}^\circ$ к горизонту камень с начальной скоростью $v_0 = 6 м/с$. Угол наклонной плоскости = 30${}^\circ$. На каком расстоянии от точки бросания упадет камень?

$$ \alpha =30{}^\circ$$ $$v_0=6\ м/с$$ $$S - ?$$

Поместим начало координат в точку бросания, ОХ -- вдоль наклонной плоскости вниз, OY -- перпендикулярно наклонной плоскости вверх. Кинематические характеристики движения:

Закон движения:

$$\left\{ \begin{array}{c} x=v_0t{cos 2\alpha +g\frac{t^2}{2}{sin \alpha \ }\ } \\ y=v_0t{sin 2\alpha \ }-\frac{gt^2}{2}{cos \alpha \ } \end{array} \right.$$ \

Подставив полученное значение $t_В$, найдём $S$:


Обновлено:

На нескольких примерах (которые я изначально решал, как обычно, на otvet.mail.ru) рассмотрим класс задач элементарной баллистики: полет тела, запущенного под углом к горизонту с некоторой начальной скоростью, без учета сопротивления воздуха и кривизны земной поверхности (то есть направление вектора ускорения свободного падения g считаем неизменным).

Задача 1. Дальность полета тела равна высоте его полета над поверхностью Земли. Под каким углом брошено тело? (в некоторых источниках почему-то приведен неправильный ответ - 63 градуса).

Обозначим время полета как 2*t (тогда в течение t тело поднимается вверх, и в течение следующего промежутка t - спускается). Пусть горизонтальная составляющая скорости V1, вертикальная - V2. Тогда дальность полета S = V1*2*t. Высота полета H = g*t*t/2 = V2*t/2. Приравниваем
S = H
V1*2*t = V2*t/2
V2/V1 = 4
Отношение вертикальной и горизонтальной скоростей есть тангенс искомого угла α, откуда α = arctan(4) = 76 градусов.

Задача 2. Тело брошено с поверхности Земли со скоростью V0 под углом α к горизонту. Найти радиус кривизны траектории тела: а) в начале движения; б) в верхней точке траектории.

В обоих случая источник криволинейности движения - это гравитация, то есть ускорение свободного падения g, направленное вертикально вниз. Все что здесь требуется - найти проекцию g, перпендикулярную текущей скорости V, и приравнять ее центростремительному ускорению V^2/R, где R - искомый радиус кривизны.

Как видно из рисунка, для начала движения мы можем записать
gn = g*cos(a) = V0^2/R
откуда искомый радиус R = V0^2/(g*cos(a))

Для верхней точки траектории (см. рисунок) имеем
g = (V0*cos(a))^2/R
откуда R = (V0*cos(a))^2/g

Задача 3. (вариация на тему) Снаряд двигался горизонтально на высоте h и разорвался на два одинаковых осколка, один из которых упал на землю через время t1 после взрыва. Через какое время после падения первого осколка упадёт второй?

Какую бы вертикальную скорость V ни приобрел первый осколок, второй приобретет ту же по модулю вертикальную скорость, но направленную в противоположную сторону (это следует из одинаковой массы осколков и сохранения импульса). Кроме того, V направлена вниз, поскольку иначе второй осколок прилетит на землю ДО первого.

h = V*t1+g*t1^2/2
V = (h-g*t1^2/2)/t1
Второй полетит вверх, потеряет вертикальную скорость через время V/g, и затем через такое же время долетит вниз до начальной высоты h, и время t2 его задержки относительно первого осколка (не время полета от момента взрыва) составит
t2 = 2*(V/g) = 2h/(g*t1)-t1

дополнено 2018-06-03

Цитата:
Камень брошен со скоростью 10 м/с под углом 60° к горизонту. Определить тангенциальное и нормальное ускорение тела спустя 1,0 с после начала движения, радиус кривизны траектории в этот момент времени, длительность и дальность полета. Какой угол образует вектор полного ускорения с вектором скорости при t = 1,0 с

Начальная горизонтальная скорость Vг = V*cos(60°) = 10*0.5 = 5 м/с, и она не меняется в течение всего полёта. Начальная вертикальная скорость Vв = V*sin(60°) = 8.66 м/с. Время полёта до максимально высокой точки t1 = Vв/g = 8.66/9.8 = 0.884 сек, а значит длительность всего полёта 2*t1 = 1.767 с. За это время тело пролетит по горизонтали Vг*2*t1 = 8.84 м (дальность полёта).

Через 1 секунду вертикальная скорость составит 8.66 - 9.8*1 = -1.14 м/с (направлена вниз). Значит угол скорости к горизонту составит arctan(1.14/5) = 12.8° (вниз). Поскольку полное ускорение здесь единственное и неизменное (это ускорение свободного падения g , направленное вертикально вниз), то угол между скоростью тела и g в этот момент времени составит 90-12.8 = 77.2°.

Тангенциальное ускорение - это проекция g на направление вектора скорости, а значит составляет g*sin(12.8) = 2.2 м/с2. Нормальное ускорение - это перпендикулярная к вектору скорости проекция g , она равна g*cos(12.8) = 9.56 м/с2. И поскольку последнее связано со скоростью и радиусом кривизны выражением V^2/R, то имеем 9.56 = (5*5 + 1.14*1.14)/R, откуда искомый радиус R = 2.75 м.

До конца финального матча баскетбольного турнира Олимпиады в Мюнхене 1972-ого года оставалось 3 секунды. Американцы – сборная США — уже во всю праздновали победу! Наша команда – сборная СССР – выигрывала около 10-и очков у великой dream Team...

За несколько минут до окончания матча. Но, растеряв в концовке все преимущество, уже уступала одно очко 49:50. Дальше произошло невероятное! Иван Едешко бросает мяч из-за лицевой линии через всю площадку под кольцо американцев, где наш центровой Александр Белов принимает мяч в окружении двух соперников и вкладывает его в корзину. 51:50 – мы олимпийские чемпионы!!!

Я, будучи тогда ребенком, испытал сильнейшие эмоции – сначала разочарование и обиду, затем сумасшедший восторг! Эмоциональная память об этом эпизоде врезалась в мое сознание на всю жизнь! Посмотрите видео в Интернете по запросу «золотой бросок Александра Белова», не пожалеете.

Американцы тогда не признали поражения и отказались от получения серебряных медалей. Возможно ли за три секунды сделать то, что совершили наши игроки? Вспомним физику!

В этой статье мы рассмотрим движение тела, брошенного под углом к горизонту, составим в Excel программу решения этой задачи при различных сочетаниях исходных данных и попытаемся ответить на поставленный выше вопрос.

Это достаточно широко известная задача в физике. В нашем случае тело, брошенное под углом к горизонту – это баскетбольный мяч. Мы рассчитаем начальную скорость, время и траекторию полета мяча, брошенного через всю площадку Иваном Едешко и попавшего в руки Александра Белова.

Математика и физика полета баскетбольного мяча.

Представленные ниже формулы и расчет в excel являются универсальными для широкого круга задач о телах, брошенных под углом к горизонту и летящих по параболической траектории без учета влияния трения о воздух.

Расчетная схема представлена на рисунке, расположенном ниже. Запускаем программу MS Excel или OOo Calc.

Исходные данные:

1. Так как мы находимся на планете Земля и рассматриваем баллистическую задачу – движение тел в поле тяжести Земли, то первым делом запишем основную характеристику гравитационного поля – ускорение свободного падения g в м/с 2

в ячейку D3: 9,81

2. Размеры баскетбольной площадки – 28 метров длина и 15 метров ширина. Расстояние полета мяча почти через всю площадку до кольца от противоположной лицевой линии по горизонтали x в метрах впишем

в ячейку D4: 27,000

3. Если принять, что бросок Едешко совершил с высоты около двух метров, а Белов поймал мяч как раз где-то на уровне кольца, то при высоте баскетбольного кольца 3,05 метра расстояние между точками вылета и прилета мяча составит по вертикали 1 метр. Запишем вертикальное перемещение y в метрах

в ячейку D5: 1,000

4. По моим замерам на видеозаписи угол вылета мяча α 0 из рук Едешко не превышал 20°. Введем это значение

в ячейку D6: 20,000

Результаты расчетов:

Основные уравнения, описывающие движение тела, брошенного под углом к горизонту без учета сопротивления воздуха:

x =v 0 *cosα 0 *t

y =v 0 *sinα 0 *t -g *t 2 /2

5. Выразим время t из первого уравнения, подставим во второе и вычислим начальную скорость полета мяча v 0 в м/с

в ячейке D8: =(D3*D4^2/2/COS (РАДИАНЫ(D6))^2/(D4*TAN (РАДИАНЫ (D6)) -D5))^0,5 =21,418

v 0 =(g *x 2 /(2*(cos α 0 ) 2 *(x *tg α 0 -y )) 0,5

6. Время полета мяча от рук Едешко до рук Белова t в секундах рассчитаем, зная теперь v 0 , из первого уравнения

в ячейке D9: =D4/D8/COS (РАДИАНЫ(D6)) =1,342

t = x /(v 0 * cos α 0 )

7. Найдем угол направления скорости полета мяча α i в интересующей нас точке траектории. Для этого исходную пару уравнений запишем в следующем виде:

y =x *tg α 0 -g *x 2 /(2* v 0 2 *(cos α 0 ) 2)

Это уравнение параболы – траектории полета.

Нам необходимо найти угол наклона касательной к параболе в интересующей нас точке – это и будет угол α i . Для этого возьмем производную, которая представляет собой тангенс угла наклона касательной:

y’ =tg α 0 -g *x /(v 0 2 *(cos α 0 ) 2)

Рассчитаем угол прилета мяча в руки Белова α i в градусах

в ячейке D10: =ATAN (TAN (РАДИАНЫ(D6)) -D3*D4/D8^2/COS (РАДИАНЫ (D6))^2)/ПИ()*180 =-16,167

α i = arctg y ’ = arctg (tg α 0 — g * x /(v 0 2 *(cos α 0 ) 2))

Расчет в excel, в принципе, закончен.

Иные варианты расчетов:

Используя написанную программу, можно быстро и просто при других сочетаниях исходных данных произвести вычисления.

Пусть, даны горизонтальная x = 27 метров, вертикальная y = 1 метр дальности полета и начальная скорость v 0 = 25 м/с.

Требуется найти время полета t и углы вылета α 0 и прилета α i

Воспользуемся сервисом MS Excel «Подбор параметра». Я неоднократно в нескольких статьях блога подробно рассказывал, как им пользоваться. Детальнее об использовании этого сервиса можно почитать .

Устанавливаем в ячейке D8 значение 25,000 за счет изменения подбором значения в ячейке D6. Результат на рисунке внизу.

Исходные данные в этом варианте расчета в excel (как, впрочем, и в предыдущем) выделены синими рамками, а результаты обведены красными прямоугольными рамками!

Устанавливая в таблице Excel некоторое интересующее значение в одной из ячеек со светло-желтой заливкой за счет подбора измененного значения в одной из ячеек со светло-бирюзовой заливкой, можно получить в общем случае десять различных вариантов решения задачи о движении тела, брошенного под углом к горизонту при десяти разных наборах исходных данных!!!

Ответ на вопрос:

Ответим на вопрос, поставленный в начале статьи. Мяч, посланный Иваном Едешко, долетел до Белова по нашим расчетам за 1,342с. Александр Белов поймал мяч, приземлился, подпрыгнул и бросил. На все это у него было «море» времени – 1,658с! Это действительно достаточное с запасом количество времени! Детальный просмотр по кадрам видеозаписи подтверждает вышесказанное. Нашим игрокам хватило трех секунд, чтобы доставить мяч от своей лицевой линии до щита соперников и забросить его в кольцо, вписав золотом свои имена в историю баскетбола!

Прошу уважающих труд автора скачивать файл после подписки на анонсы статей!

Если скорость \(~\vec \upsilon_0\) направлена не вертикально, то движение тела будет криволинейным.

Рассмотрим движение тела, брошенного горизонтально с высоты h со скоростью \(~\vec \upsilon_0\) (рис. 1). Сопротивлением воздуха будем пренебрегать. Для описания движения необходимо выбрать две оси координат - Ox и Oy . Начало отсчета координат совместим с начальным положением тела. Из рисунка 1 видно, что υ 0x = υ 0 , υ 0y = 0, g x = 0, g y = g .

Тогда движение тела опишется уравнениями:

\(~\upsilon_x = \upsilon_0,\ x = \upsilon_0 t; \qquad (1)\) \(~\upsilon_y = gt,\ y = \frac{gt^2}{2}. \qquad (2)\)

Анализ этих формул показывает, что в горизонтальном направлении скорость тела остается неизменной, т. е. тело движется равномерно. В вертикальном направлении тело движется равноускоренно с ускорением \(~\vec g\), т. е. так же, как тело, свободно падающее без начальной скорости. Найдем уравнение траектории. Для этого из уравнения (1) найдем время \(~t = \frac{x}{\upsilon_0}\) и, подставив его значение в формулу (2), получим\[~y = \frac{g}{2 \upsilon^2_0} x^2\] .

Это уравнение параболы. Следовательно, тело, брошенное горизонтально, движется по параболе. Скорость тела в любой момент времени направлена по касательной к параболе (см. рис. 1). Модуль скорости можно рассчитать по теореме Пифагора:

\(~\upsilon = \sqrt{\upsilon^2_x + \upsilon^2_y} = \sqrt{\upsilon^2_0 + (gt)^2}.\)

Зная высоту h , с которой брошено тело, можно найти время t 1 , через которое тело упадет на землю. В этот момент координата y равна высоте: y 1 = h . Из уравнения (2) находим\[~h = \frac{gt^2_1}{2}\]. Отсюда

\(~t_1 = \sqrt{\frac{2h}{g}}. \qquad (3)\)

Формула (3) определяет время полета тела. За это время тело пройдет в горизонтальном направлении расстояние l , которое называют дальностью полета и которое можно найти на основании формулы (1), учитывая, что l 1 = x . Следовательно, \(~l = \upsilon_0 \sqrt{\frac{2h}{g}}\) - дальность полета тела. Модуль скорости тела в этот момент \(~\upsilon_1 = \sqrt{\upsilon^2_0 + 2gh}.\).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 15-16.