Be oh 2 какое основание. Сильная кислота и сильное основание. Взаимодействие оснований с кислотами

Гидролиз соли» — Формировать представление о химии как производительной силе общества. Уксусная кислота СН3СООН– самая древняя из органических кислот. В кислотах — группы карбоксильные, Но все кислоты здесь — несильные.

Все кислоты, их свойства и основания делятся на сильные и слабые. Например, нельзя сделать концентрированный раствор слабой кислоты или разбавленный раствор сильного основания. Наша вода в этом случае играет роль основания, так как получает протон от соляной кислоты. Кислоты, которые диссоциируются нацело в водных растворах, называются сильными.

Для оксидов, гидратированных неопределённым числом молекул воды, например Tl2O3 n H2O, недопустимо писать формулы типа Tl(OH)3. Называть такие соединениями гидроксидами также не рекомендуется.

Для оснований можно количественно выразить их силу, то есть способность отщеплять протон от кислоты. Все основания являются твердыми веществами, имеющими различную окраску. Внимание! Щёлочи являются очень едкими веществами. При попадании на кожу растворы щелочей вызывают сильные долгозаживающие ожоги, при попадании в глаза могут вызвать слепоту. При обжиге содержащих мышьяк кобальтовых минералов выделяется летучий ядовитый оксид мышьяка.

Такие свойства молекулы воды вам уже известны. II) и раствором уксусной кислоты. HNO2) — только один протон.

Все основания – твёрдые вещества, которые имеют различную окраску. 1. Действуют на индикаторы. Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

Охладите емкости, например, поместив их в сосуд со льдом. Три раствора останутся прозрачными, а четвертый быстро помутнеет, начнет выпадать белый осадок. Вот в нем-то и находится соль бария. Отложите эту емкость в сторону. Можно быстро определить углекислый барий и другим способом. Это довольно просто сделать, вам понадобятся фарфоровые чашки для выпаривания и спиртовка. Если это соль лития – цвет будет ярко-красным. Кстати, если бы таким же образом испытали соль бария – цвет пламени должен был быть зеленым.

Электролит – вещество, которое в твердом состоянии является диэлектриком, то есть не проводит электрического тока, однако, в растворенном или расплавленном виде становится проводником. Запомните, что степень диссоциации и, соответственно, сила электролита находятся в зависимости от многих факторов: природы самого электролита, растворителя, температуры. Поэтому само это разделение в известной степени условно. Ведь одно и то же вещество может при различных условиях быть и сильным электролитом, и слабым.

Гидролиз не идет, новых соединений не образуется, кислотность среды не изменяется. Как меняется кислотность среды? Уравнения реакций можно пока не записывать. Нам осталось последовательно обсудить 4 группы солей и для каждой из них привести специфический «сценарий» гидролиза. В следующей части мы начнем с солей, образованных слабым основанием и сильной кислотой.

После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. H раствора, какими общими свойствами обладают кислоты и основания. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса.

Чем этот показатель ниже, тем сильнее кислота. Сильная или слабая — это нужно в справочнике к.-н. смотреть, но классику нужно знать. Сильные — это такие кислоты, которые могут вытеснить из соли анион другой кислоты.

ЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых проводят электрический ток.

НЕЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых не проводят электрический ток.

Диссоциация – распад соединений на ионы.

Степень диссоциации – отношение числа продиссоциированных на ионы молекул к общему числу молекул в растворе.

СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ при растворении в воде практически полностью диссоциируют на ионы.

При написании уравнений диссоциации сильных электролитов ставят знак равенства.

К сильным электролитам относятся:

· Растворимые соли (смотри таблицу растворимости );

· Многие неорганические кислоты: HNO 3 , H 2 SO 4 ,HClO 3 , HClO 4 , HMnO 4 , HCl, HBr, HI (смотри кислоты-сильные электролиты в таблице растворимости );

· Основания щелочных (LiOH, NaOH,KOH) и щелочноземельных (Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2) металлов (смотри основания-сильные электролиты в таблице растворимости ).

СЛАБЫЕ ЭЛЕКТРОЛИТЫ в водных растворах лишь частично (обратимо) диссоциируют на ионы.

При написании уравнений диссоциации слабых электролитов ставят знак обратимости.

К слабым электролитам относятся:

· Почти все органические кислоты и вода (Н 2 О);

· Некоторые неорганические кислоты: H 2 S, H 3 PO 4 ,HClO 4 , H 2 CO 3 , HNO 2 , H 2 SiO 3 (смотри кислоты-слабые электролиты в таблице растворимости );

· Нерастворимые гидроксиды металлов (Mg(OH) 2 ,Fe(OH) 2 , Zn(OH) 2) (смотри основания- c лабые электролиты в таблице растворимости ).

На степень электролитической диссоциации влияет ряд факторов:

    природа растворителя и электролита : сильными электролитами являются вещества с ионными и ковалентными сильно-полярными связями; хорошей ионизирующей способностью, т.е. способностью вызывать диссоциацию веществ, обладают растворители с большой диэлектрической проницаемостью, молекулы которых полярны (например, вода);

    температура : поскольку диссоциация - процесс эндотермический, повышение температуры повышает значение α;

    концентрация : при разбавлении раствора степень диссоциации возрастает, а с увеличением концентрации - уменьшается;

    стадия процесса диссоциации : каждая последующая стадия менее эффективна, чем предыдущая, примерно в 1000–10 000 раз; например, для фосфорной кислоты α 1 > α 2 > α 3:

H3PО4⇄Н++H2PО−4 (первая стадия, α 1),

H2PО−4⇄Н++HPО2−4 (вторая стадия, α 2),

НPО2−4⇄Н++PО3−4 (третья стадия, α 3).

По этой причине в растворе данной кислоты концентрация ионов водорода наибольшая, а фосфат-ионов РО3−4 - наименьшая.

1. Растворимость и степень диссоциации вещества между собой не связаны. Например, слабым электролитом является хорошо (неограниченно) растворимая в воде уксусная кислота.

2. В растворе слабого электролита меньше других содержится тех ионов, которые образуются на последней стадии электролитической диссоциации

На степень электролитической диссоциации влияет также добавление других электролитов : например, степень диссоциации муравьиной кислоты

HCOOH ⇄ HCOO − + H +

уменьшается, если в раствор внести немного формиата натрия. Эта соль диссоциирует с образованием формиат-ионов HCOO − :

HCOONa → HCOO − + Na +

В результате в растворе концентрация ионов НСОО– повышается, а согласно принципу Ле Шателье, повышение концентрации формиат-ионов смещает равновесие процесса диссоциации муравьиной кислоты влево, т.е. степень диссоциации уменьшается.

Закон разбавления Оствальда - соотношение, выражающее зависимость эквивалентной электропроводностиразбавленного раствора бинарного слабого электролита от концентрации раствора:

Здесь - константа диссоциации электролита, - концентрация, и - значения эквивалентной электропроводности при концентрации и при бесконечном разбавлении соответственно. Соотношение является следствием закона действующих масс и равенства

где - степень диссоциации.

Закон разбавления Оствальда выведен В.Оствальдом в 1888 году и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

Электролитическая диссоциация воды. Водородный показатель рН Вода представляет собой слабый амфотерный электролит: Н2О Н+ + ОН- или, более точно: 2Н2О= Н3О+ + ОН- Константа диссоциации воды при 25оС равна: Такое значение константы соответствует диссоциации одной из ста миллионов молекул воды, поэтому концентрацию воды можно считать постоянной и равной 55,55 моль/л (плотность воды 1000 г/л, масса 1 л 1000 г, количество вещества воды 1000г:18г/моль=55,55 моль, С=55,55 моль: 1 л =55,55 моль/л). Тогда Эта величина постоянная при данной температуре (25оС), она называется ионным произведением воды KW: Диссоциация воды – процесс эндотермический, поэтому с повышением температуры в соответствии с принципом Ле-Шателье диссоциация усиливается, ионное произведение возрастает и достигает при 100оС значения 10-13. В чистой воде при 25оС концентрации ионов водорода и гидроксила равны между собой: = = 10-7 моль/л Растворы, в которых концентрации ионов водорода и гидроксила равны между собой, называются нейтральными. Если к чистой воде прибавить кислоту, концентрация ионов водорда повысится и станет больше, чем 10-7 моль/л, среда станет кислой, при этом концентрация ионов гидроксила мгновенно изменится так, чтобы ионное произведение воды сохранило свое значение 10-14. Тоже самое будет происходить и при добавлении к чистой воде щелочи. Концентрации ионов водорода и гидроксила связаны между собой через ионное произведение, поэтому, зная концентрацию одного из ионов, легко вычислить концентрацию другого. Например, если = 10-3 моль/л, то = KW/ = 10-14/10-3 = 10-11 моль/л, или, если = 10-2 моль/л, то = KW/ = 10-14/10-2 = 10-12 моль/л. Таким образом, концентрация ионов водорода или гидроксила может служить количественной характеристикой кислотности или щелочности среды. На практике пользуются не концентрациями ионов водорода или гидроксила, а водородным рН или гидроксильным рОН показателями. Водородный показатель рН равен отрицательному десятичному логарифму концентрации ионов водорода: рН = - lg Гидроксильный показатель рОН равен отрицательному десятичному логарифму концентрации ионов гидроксила: рОН = - lg Легко показать, прологарифмировав ионное произведение воды, что рН + рОН = 14 Если рН среды равен 7 - среда нейтральная, если меньше 7 - кислая, причем чем меньше рН, тем выше концентрация ионов водорода. pН больше 7 – среда щелочная, чем больше рН, тем выше концентрация ионов гидроксила.

Мы дали определение гидролиза , вспомнили некоторые факты о солях . Сейчас мы обсудим сильные и слабые кислоты и выясним, что "сценарий" гидролиза зависит именно от того, какой кислотой и каким основанием образована данная соль.

← Гидролиз солей. Часть I

Сильные и слабые электролиты

Напомню, что все кислоты и основания можно условно разделить на сильные и слабые . Сильные кислоты (и, вообще, сильные электролиты) в водном растворе диссоциируют практически полностью. Слабые электролиты распадаются на ионы в незначительной степени.

К сильным кислотам относятся:

  • H 2 SO 4 (серная кислота),
  • HClO 4 (хлорная кислота),
  • HClO 3 (хлорноватая кислота),
  • HNO 3 (азотная кислота),
  • HCl (соляная кислота),
  • HBr (бромоводородная кислота),
  • HI (иодоводородная кислота).

Ниже приведен список слабых кислот:

  • H 2 SO 3 (сернистая кислота),
  • H 2 CO 3 (угольная кислота),
  • H 2 SiO 3 (кремниевая кислота),
  • H 3 PO 3 (фосфористая кислота),
  • H 3 PO 4 (ортофосфорная кислота),
  • HClO 2 (хлористая кислота),
  • HClO (хлорноватистая кислота),
  • HNO 2 (азотистая кислота),
  • HF (фтороводородная кислота),
  • H 2 S (сероводородная кислота),
  • большинство органических кислот, напр., уксусная (CH 3 COOH).

Естественно, невозможно перечислить все существующие в природе кислоты. Приведены лишь наиболее "популярные". Следует также понимать, что разделение кислот на сильные и слабые является достаточно условным.


Существенно проще обстоят дела с сильными и слабыми основаниями. Можно воспользоваться таблицей растворимости . К сильным основаниям относятся все растворимые в воде основания, кроме NH 4 OH. Эти вещества называют щелочами (NaOH, KOH, Ca(OH) 2 и т. д.)

Слабые основания - это:

  • все нерастворимые в воде гидроксиды (напр., Fe(OH) 3 , Cu(OH) 2 и т. д.),
  • NH 4 OH (гидроксид аммония).

Гидролиз солей. Главные факты

Читающим эту статью может показаться, что мы уже забыли об основной теме разговора, и ушли куда-то в сторону. Это не так! Наша беседа о кислотах и основаниях, о сильных и слабых электролитах имеет прямое отношение к гидролизу солей . Сейчас вы в этом убедитесь.


Итак, позвольте изложить вам основные факты:

  1. Не все соли подвергаются гидролизу. Существуют гидролитически устойчивые соединения, например, хлорид натрия.
  2. Гидролиз солей может быть полным (необратимым) и частичным (обратимым).
  3. В ходе реакции гидролиза происходит образование кислоты или основания, изменяется кислотность среды.
  4. Принципиальная возможность гидролиза, направление соответствующей реакции, ее обратимость или необратимость определяются силой кислоты и силой основания , которыми образована данная соль.
  5. В зависимости от силы соответствующей кислоты и соотв. основания, все соли можно условно разделить на 4 группы . Для каждой из этих групп характерен свой "сценарий" гидролиза.

Пример 4 . Соль NaNO 3 образована сильной кислотой (HNO 3) и сильным основанием (NaOH). Гидролиз не идет, новых соединений не образуется, кислотность среды не изменяется.

Пример 5 . Соль NiSO 4 образована сильной кислотой (H 2 SO 4) и слабым основанием (Ni(OH) 2). Идет гидролиз по катиону, в ходе реакции образуются кислота и основная соль.

Пример 6 . Карбонат калия образован слабой кислотой (H 2 CO 3) и сильным основанием (KOH). Гидролиз по аниону, образование щелочи и кислой соли. Щелочная среда раствора.

Пример 7 . Сульфид алюминия образован слабой кислотой (H 2 S) и слабым основанием (Al(OH) 3). Идет гидролиз как по катиону, так и по аниону. Необратимая реакция. В ходе процесса образуются H 2 S и гидроксид алюминия. Кислотность среды меняется в незначительной степени.

Попробуйте самостоятельно:

Упражнение 2 . К какому типу относятся следующие соли: FeCl 3 , Na 3 PO 3 , KBr, NH 4 NO 2 ? Подвергаются ли эти соли гидролизу? По катиону или по аниону? Что образуется в ходе реакции? Как меняется кислотность среды? Уравнения реакций можно пока не записывать.

Нам осталось последовательно обсудить 4 группы солей и для каждой из них привести специфический "сценарий" гидролиза. В следующей части мы начнем с солей, образованных слабым основанием и сильной кислотой.

Чтобы понять, как протекает гидролиз солей в их водных растворах, для начала приведем определение данного процесса.

Определение и особенности гидролиза

Данный процесс предполагает химическое действие ионов воды с ионами соли, в результате образуется слабое основание (или кислота), а также изменяется реакция среды. Любая соль может быть представлена как продукт химического взаимодействия основания и кислоты. В зависимости от того, какова их сила, выделяют несколько вариантов протекания процесса.

Типы гидролиза

В химии рассматривается три разновидности протекания реакции между катионами соли и воды. Каждый процесс осуществляется с изменением рН среды, поэтому предполагается использование для определения водородного показателя разных видов индикаторов. Например, для кислой среды применяют фиолетовый лакмус, для щелочной реакции подойдет фенолфталеин. Проанализируем подробнее особенности каждого варианта гидролиза. Сильные и слабые основания можно определить по таблице растворимости, а силу кислот выявляем по таблице.

Гидролиз по катиону

В качестве примера такой соли рассмотри хлорид железа (2). Гидроксид железа (2) - это слабое основание, а соляная кислота является сильной. В процессе взаимодействия с водой (гидролиза) происходит образование основной соли (гидроксохлорида железа 2), а также образуется соляная кислота. В растворе появляется кислая среда, определить ее можно с помощью синего лакмуса (рН меньше 7). При этом сам гидролиз протекает по катиону, так как использовано слабое основание.

Приведем еще один пример протекания гидролиза для описываемого случая. Рассмотрим соль хлорид магния. Гидроксид магния - это слабое основание, а соляная кислота - сильная. В процессе взаимодействия с молекулами воды хлорид магния превращается в основную соль (гидроксохлорид). Гидроксид магния, формула которого в общем виде представлена в виде М(ОН) 2 , малорастворим в воде, но сильная хлороводородная кислота придает раствору кислую среду.

Гидролиз по аниону

Следующий вариант гидролиза характерен для соли, которая образована сильным основанием (щелочью) и слабой кислотой. В качестве примера для данного случая рассмотрим карбонат натрия.

В данной соли есть сильное основание натрия, а также слабая угольная кислота. Взаимодействие с молекулами воды протекает с образованием кислой соли - гидрокарбоната натрия, то есть идет гидролиз по аниону. Кроме того, в растворе образуется который придает раствору щелочную среду.

Приведем еще один пример для данного случая. Сульфит калия - это соль, которая образована сильным основанием - едким калием, а также слабой В процессе взаимодействия с водой (при гидролизе) происходит образование гидросульфита калия (кислой соли) и гидроксида калия (щелочи). Среда в растворе будет щелочная, подтвердить ее можно с помощью фенолфталеина.

Полный гидролиз

Соль слабой кислоты и слабого основания подвергается полному гидролизу. Попробуем выяснить, в чем его особенность, и какие продукты будут образовываться в результате данной химической реакции.

Проанализируем гидролиз слабого основания и слабой кислоты на примере сульфида алюминия. Данная соль образована гидроксидом алюминия, который является слабым основанием, а также слабой сероводородной кислотой. При взаимодействии с водой наблюдается полный гидролиз, в результате которого образуется газообразный сероводород, а также в виде осадка гидроксид алюминия. Такое взаимодействие протекает и по катиону, и по аниону, поэтому такой вариант гидролиза считается полным.

Также в качестве примера взаимодействия по данному типу соли с водой можно привести сульфид магния. В составе данной соли есть гидроксид магния, формула его - Mg(OH)2. Это слабое основание, нерастворимое в воде. Кроме того, внутри сульфида магния есть сероводородная кислота, являющаяся слабой. При взаимодействии с водой происходит полный гидролиз (по катиону и аниону), в результате чего образуется в виде осадка гидроксид магния, а также в виде газа выделяется сероводород.

Если рассматривать гидролиз соли, которая образована сильной кислотой и сильным основанием, то следует отметить, что он не протекает. Среда в растворах таких солей, как хлорид калия, остается нейтральной.

Заключение

Сильные и слабые основания, кислоты, которыми образованы соли, влияют на результат гидролиза, реакцию среды в образующемся растворе. Подобные процессы широко распространены в природе.

Гидролиз имеет особое значение в химическом преобразовании земной коры. В ней содержатся сульфиды металлов, малорастворимые в воде. По мере их гидролиза происходит образование сероводорода, его выброс в процессе вулканической деятельности на поверхность земли.

Силикатные породы при переходе в гидроксиды, вызывают постепенное разрушение горных пород. Например, такой минерал как малахит, является продуктом гидролиза карбонатов меди.

Интенсивный процесс гидролиза происходит также и в Мировом океане. и кальция, которые выносятся водой, обладают слабощелочной средой. В таких условиях отлично протекает процесс фотосинтеза в морских растениях, интенсивнее развиваются морские организмы.

В нефти есть примеси воды и солей кальция и магния. В процессе нагревания нефти, происходит их взаимодействие с водяными парами. В ходе гидролиза образуется хлороводород, при взаимодействии которого с металлом, происходит разрушение оборудования.

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH) 2 . Однако существуют исключения. Так, гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 . Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH) 2 могут образовывать основные соли при недостатке кислоты, например:

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P 2 O 5 , SO 3 , N 2 O 5 , с образованием средних солей:

Нерастворимые основания вида Me(OH) 2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na образуется соль Na 3 :

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH) 2 , устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH) 2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000 o C:

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 o C:

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с сильными кислотами:

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3, не реагируют с такими кислотами, как H 2 S, H 2 SO 3 и H 2 СO 3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO 3 , P 2 O 5 , N 2 O 5):

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3 , не реагируют с кислотными оксидами SO 2 и СO 2 .

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду.