Приведение плоской системы сил к данному центру. Случаи приведение плоской системы сил к данной точке. Условия равновесия пар сил

Теорема . Силу F , не изменяя её действие на тело, можно перенести из точки её приложения А в любой центр приведения О, присоединив при этом к телу пару сил с моментом М , геометрически равным моменту M О (F ) этой силы относительно центра приведения .

Пусть задана силаF , лежащая в горизонтальной плоскости OXY параллельно оси ОХ (рис. 1.41).

Согласно методу Пуансо вместо силы F , приложенной в точке А, получена сила F 1 , равная по величине силе F , но приложенная в точке О и присоединённая пара сил , векторный момент которой M = M О (F ).

По теореме об эквивалентности пар сил присоединённую пару сил можно заменить любой другой парой сил с таким же векторным моментом.

1.15. Приведение произвольной системы сил к заданному центру

Теорема . Любую произвольную систему сил, действующую на тело, можно привести в общем случае к силе и паре сил.

Такой процесс замены системы сил одной силой и парой сил называют приведением системы сил к заданному центру .

П

усть задана произвольная система сил (F 1 , …, F n) (рис. 1.42).

Последовательно применяя метод Пуансо к каждой из заданной системы сил, приведём её к произвольному центру О. В результате этого получим систему сил (F 1 , …, F n), приложенных в центре О, и присоединённую пару сил с моментом M = Σ M О (F i). Складывая силы F 1 , …, F n по правилу параллелограмма, получим их равнодействующую R * , равную геометрической сумме заданных сил и приложенную в центре приведения.

Геометрическую сумму всех сил системы называют главным вектором системы сил и, в отличие от равнодействующей R , обозначают R * .

Вектор M = Σ M О (F i) называют главным моментом системы сил относительно центра приведения.

Этот результат можно сформулировать следующим образом: силы, произвольно расположенные в пространстве, можно привести к одной силе, равной их главному вектору и приложенной в центре приведения и к паре сил с моментом, равным главному моменту всех сил относительно центра приведения.

Выбор центра приведения не отражается на модуле и направлении главного вектора R * , но влияет на модуль и направление главного момента М . Главный вектор R * является свободным вектором и может быть приложен в любой точке тела.

1.16. Аналитические условия равновесия плоской произвольной системы сил

Плоская произвольная система сил система сил, линии действия которых произвольно расположены в одной плоскости.

Линии действия плоской произвольной системы сил пересекаются в различных точках.

Н

а рис. 1.43 изображена заданная плоская произвольная система сил (F 1 , …, F n), линии действия которых лежат в плоскости OYZ.

Последовательно применяя метод Пуансо для каждой из сил F i , осуществим параллельный перенос сил из точек A i в начало О системы отсчёта OXYZ. Согласно этому методу, сила F i будет эквивалентна силе F i ,приложенной в точке О, и присоединённой паре сил с моментом M i = M О (F i ) . При этом M i = ± F i h i , где h i – плечо силы F i относительно центра приведения О. По окончании этой работы получим сходящуюся систему сил (F i ,…, F n) и сходящуюся систему векторных моментов M i = M О (F i) присоединённых пар сил, приложенных в центре приведения. Сложив векторы сил, получим глав

ный вектор R * = ΣF i и главный момент эквивалентной пары сил M = Σ M О (F i).

Таким образом, плоская произвольная система сил (F i ,…, F n ) эквивалентна одной силе R* = Σ F i и паре сил с моментом M = Σ M О (F i ).

При решении задач статики используют проекции силы на координатные оси и алгебраические моменты сил относительно точки.

На рис. 1.44 изображена плоская произвольная система сил, приведённая к главному вектору сил, модуль которой R*=
и эквивалентной паре сил с алгебраическим моментом M = Σ M О (F i).

В

этих формулах Σ F iО X , Σ F iОY – суммы проекций сил на координатные оси; Σ M О (F i) – сумма алгебраических моментов сил относительно точки О.

Геометрическое условие равновесия любой системы сил выражается векторными равенствами: R * = Σ F i = 0; M = Σ M О (F i) = 0.

При решении задач требуется определить реакции R i E внешних связей, наложенных на механическую систему. При этом активные силы F i E , приложенные к этой системе, известны. Так как активные силы F i E и реакции связей R i E относятся к разряду внешних сил, то геометрическое условие равновесия системы внешних сил целесообразно выразить векторными равенствами:

Σ F i E + Σ R i E = 0;

Σ M A (F i E) + Σ M A (R i E) = 0.

Для равновесия системы внешних сил необходимо и достаточно, чтобы геометрическая сумма активных сил F i E и реакций R i E внешних связей и геометрическая сумма моментов активных сил M A ( F i E ) и реакций внешних связей M A ( R i E ) относительно произвольной точки А равнялись нулю.

Проецируя эти векторные равенства на координатные оси системы отсчёта, получим аналитические условия равновесия системы внешних сил . Для плоской произвольной системы сил эти уравнения приобретают следующий вид:

Σ
+ Σ
= 0;

Σ
+ Σ
= 0;

Σ M A (F i E) + Σ M A (R i E) = 0,

где Σ
, Σ
– соответственно суммы проекций активных сил на координатные оси OX, OY; Σ
, Σ
– суммы проекций реакций внешних связей на координатные оси OX, OY; Σ M A (F i E) – сумма алгебраических моментов активных сил F i E относительно точки А; Σ M A (R i E) – сумма алгебраических моментов реакций R i E внешних связей относительно точки А.

Совокупность этих формул есть первая (основная) форма уравнений равновесия плоской произвольной системы внешних сил .

Таким образом , для равновесия плоской произвольной системы внешних сил, приложенных к механической системе, необходимо и достаточно, чтобы суммы проекций активных сил и реакций внешних связей на две координатные оси и сумма алгебраических моментов активных сил и реакций внешних связей относительно произвольной точки А равнялись нулю.

Существуют и другие формы уравнений равновесия плоской произвольной системы сил.

Вторая форма выражается совокупностью формул:

Σ
+ Σ
= 0;

Σ M A (F i E) + Σ M A (R i E) = 0;

Σ M В (F i E) + Σ M В (R i E) = 0.

Для равновесия плоской произвольной системы внешних сил, приложенных к телу, необходимо и достаточно, чтобы сумма проекций сил на координатную ось и суммы алгебраических моментов сил относительно произвольных точек А и В равнялись нулю.

Третья форма уравнений равновесия выражается совокупностью формул:

Σ M A (F i E) + Σ M A (R i E) = 0;

Σ M В (F i E) + Σ M В (R i E) = 0;

Σ M С (F i E) + Σ M С (R i E) = 0.

Для равновесия плоской произвольной системы внешних сил, приложенных к телу, необходимо и достаточно, чтобы суммы алгебраических моментов этих сил относительно произвольных точек А, В и С равнялись нулю.

При использовании третьей формы уравнений равновесия точки А, В и С не должны лежать на одной прямой.

Описанный метод приведения одной силы к данной точке можно применить к какому угодно числу сил. Допустим, что в точках тела A,B,C и D (рис. 19) приложены силы 1 , 2 , 3 и 4 . Требуется привести эти силы к точке О плоскости. Приведем сначала силу 1 , приложенную в точке А. Приложим в точке О две силы ’ 1 и ’’ 1 , равные порознь по модулю заданной силе 1 , параллельные ей и направленные в противоположные стороны. В результате приведения силы 1 получим силу ’ 1 , приложенную в точке О , и пару сил 1 ’’ 1 (силы, образующие пару, отмечены черточками) с плечом а 1 . Поступив таким же образом с силой 2 ,приложенной в точке В , получим силу 2 , приложенную в точке О , и пару сил 2 ’’ 2 с плечом а 2 и т.д.

Плоскую систему сил, приложенных в точках А , В , С и D , мы заменили сходящимися силами ’ 1 , ’ 2 , ’ 3 и ’ 4 , приложенными в точке О , и парами сил с моментами, равными моментам заданных сил относительно точки О :

М 1 = Р 1 а 1 =М о ( 1); М 2 = ­ Р 2 а 2 = М о ( 2);

М 3 = – Р 3 а 3 = М о ( 3); М 4 = – Р 4 а 4 = М о ( 4).

Сходящиеся в точке силы можно заменить одной силой " , равной геометрической сумме составляющих,

" = " 1 + " 2 + " 3 + " 4 = 1 + 2 + 3 + 4 = i . (16)

Эту силу, равную геометрической сумме заданных сил, называют главным вектором системы сил.

На основании правила сложения пар сил из можно заменить результирующей парой, момент которой равен алгебраической сумме моментов заданных сил относительно точки О :

М о = М 1 + М 2 + М 3 + М 4 = i = o ( i). (17)

По аналогии с главным вектором момент М 0 пары, равный алгебраической сумме моментов всех сил относительно центра приведения О , называют главным моментом системы относительно данного центра приведения О. Следовательно, в общем случае плоская система сил в результате приведения к данной точке О заменяется эквивалентной ей системой, состоящей из одной силы – главного вектора – и одной пары, момент которой называют главным моментом заданной системы сил относительно центра приведения.

Необходимо усвоить, что главный вектор не является равнодействующей данной системы сил, так как эта система не эквивалентна одной силе ’. Только в частном случае, когда главный момент обращается в нуль, главный вектор будет равнодействующей данной системы сил. Так как главный вектор равен геометрической сумме сил данной системы, то ни модуль, ни направление его не зависят от выбора центра приведения. Величина и знак главного момента М 0 зависят от положения центра приведения, так как плечи составляющих пар зависят от взаимного положения сил и точки (центра), относительно которой берутся моменты.

Могут встретиться следующие случаи приведения системы сил:



1. " ≠ 0; М о ≠ 0 - общий случай; система приводится к главному вектору и к главному моменту.

2. " ≠ 0; М о = 0; система приводится к одной равнодействующей, равной главному вектору системы.

3. " = 0; М о ≠ 0; система приводится к паре сил, момент которой равен главному моменту.

4. " = 0; М о = 0; система находится в равновесии.

Можно доказать, что в общем случае, когда " ≠ 0 и М о ≠ 0, всегда есть точка, относительно которой главный момент системы сил равен нулю.

Рассмотрим плоскую систему сил, которая приведена к точке О , т.е. заменена главным вектором " ≠ 0 , приложенным в точке О , и главным моментом М о ≠ 0 (рис. 20).

Для определенности примем, что главный момент направлен по часовой стрелке, т.е. М о < 0. Изобразим этот главный момент парой сил "" , модуль которых выберем равным модулю главного вектора " , т.е. R = R ’’ = R ’ . Одну из сил, составляющих пару, – силу "" – приложим в центре приведения О , другую силу –– в некоторой точке С , положение которой определится из условия: М о = ОС*R. Следовательно,

ОС = . (18)

Расположим пару сил "" так, чтобы сила "" была направлена в сторону, противоположную главному вектору " . В точке О (рис. 20) имеем две равные взаимно противоположные силы " и "" , направленные по одной прямой; их можно отбросить (согласно третьей аксиоме). Следовательно, относительно точки С главный момент рассматриваемой системы сил равен нулю, и система приводится к равнодействующей .

§ 18. Теорема о моменте равнодействующей (теорема Вариньона)

В общем случае (см. § 17) произвольная плоская система сил приводится к главному вектору " и главному моменту М 0 относительно выбранного центра приведения, причем главный момент равен алгебраической сумме моментов заданных сил относительно точки О

М о = o ( i). (а)

Было показано, что можно выбрать центр приведения (на рис. 20 точка С ), относительно которого главный момент системы будет равен нулю, и система сил приведется к одной равнодействующей , равной по модулю главному вектору (R = R’ ). Определим момент равнодействующей относительно точки О . Учитывая, что плечо ОС силы равно , получаем

М о () = R*OC =R = М о. (б)

Две величины, порознь равные третьей, равны между собой, поэтому из уравнений (а) и (б) находим

М о () = o ( i). (19)

Полученное уравнение выражает теорему Вариньона: момент равнодействующей плоской системы сил относительно произвольно взятой точки равен алгебраической сумме моментов составляющих сил относительно той же точки.

Из теоремы Вариньона следует, что главный момент плоской системы сил относительно любой точки, лежащей на линии действия ее равнодействующей, равен нулю.

Плоская система произвольно расположенных сил.

Условия равновесия пар сил.

Если на твердое тело действует несколько пар сил, как угодно расположенных в пространстве, то последовательно применяя правило параллелограмма к каждым двум моментам пар сил, можно любое количество пар сил заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.

Теорема. Для равновесия пар сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма проекций моментов пар сил на каждую из трех координатных осей была равна нулю.

Рассмотрим случай переноса силы в произвольную точку,не лежащую на линии действия силы.

Возьмем силу F, приложенную в точке С. Требуется перенести эту силу параллельно самой себе в некоторую точку О. Приложимв точке О две силы F" и F", противоположно направленные, равные по значению и параллельные заданной силе F, т. е. F" = F" = F. От приложения в точке О этих сил состояние тела не изменяется, так как они взаимно уравновешиваются. Полученную систему трех сил можно рассматривать как состоящую из силы F", приложенной в точке О, и пары сил FF" с моментом М = Fa. Эту пару сил называют присоединенной , а ее плечо а равно плечу силы F относительно точки О.

Таким образом, при приведении силы F к точке, не лежащей на линии действия силы, получается эквивалентная система, состоящая из силы, такой же по модулю и направлению, как и сила F, и присоединенной пары сил, момент которой равен моменту данной силы относительно точки приведения:

В качестве примера приведения силы рассмотрим действие силы F на конец С защемленного стержня (рис.28,б). После приведения силы F в точку О защемленного сечения обнаруживаем в нем силу F1 равную и параллельную заданной, и присоединенный момент М, равный моменту заданной силы F относительно точки приведения О,

1.4.2 Приведение плоской системы сил к данной точке

Описанный метод приведения одной силы к данной точке можно применить к какому угодно числу сил. Допустим, что в точках тела А, В, С и D (рис. 30) приложены силы F1,F2,F3,F4.

Требуется привести эти силы к точке О плоскости. Приведем сначала силу F1 , приложенную в точке А. Приложим в точке О две силы F1" и F1"", параллельные ей и направленные в противоположные стороны. В результате приведения силы F1 получим силу F1" , приложенную в точке О, и пару сил F1" F1"" с плечом a1. Поступив таким же образом с силой F2 , приложенной в точке В, получим силу F2", приложенную в точке О, и пару сил с плечом a2 т. д.

Плоскую систему сил, приложенных в точках А, В, С и D, мы заменили сходящимися силами F1,F2,F3,F4 , приложенными в точке О, и парами сил с моментами, равными моментам заданных сил относительно точки О:



Сходящиеся в точке силы можно заменить одной силой F"гл, равной геометрической сумме составляющих,

Эту силу, равную геометрической сумме заданных сил, называют главным вектором системы сил и обозначают F"гл.

На основании правила сложения пар сил их можно заменить результирующей парой, момент которой равен алгебраической сумме моментов заданных сил относительно точки О и называется главным моментом относительно точки приведения

Следовательно, в общем случае плоская система сил в результате приведения к данной точке О заменяется эквивалентной ей системой, состоящей из одной силы (главного вектора) и одной пары (главного момента).

Необходимо усвоить, что главный вектор F"гл является равнодействующей данной системы сил, так как эта система не эквивалентна одной силе F"гл. Только в частном случае, когда главный момент обращается в нуль, главный вектор будет равнодействующей данной системы сил. Так как главный вектор равен геометрической сумме сил заданной системы, то ни модуль, ни направление его не зависят от выбора центра приведения. Значение и знак главного момента Mгл зависят от положения центра приведения, так как плечи составляющих пар зависят от взаимного положения сил и точки (центра), относительно которой берутся моменты.

Могут встретиться следующие случаи приведения системы сил:
1. - общий случай; система приводится главному вектору и к главному моменту.
2. ; система приводится к одной равнодействующей, равной главному вектору системы.
3. ; система приводится к паре сил, момент которой равен главному моменту.
4. ; система находится в равновесии, т. е. для равновесия плоской системы сил необходимо и достаточно, чтобы ее главный вектор и главный момент одновременно были равны нулю.

Можно доказать, что в общем случае, когда, всегда есть точка, относительно которой главный момент сил равен нулю.

Рассмотрим плоскую систему сил, которая приведена к точке О, т. е. заменена главным вектором , приложенным в точке О, и главным моментом . Для определенности примем, что главный момент направлен по часовой стрелке, т. е. . Изобразим этот главный момент парой сил FF", модуль которых выберем равным модулю главного вектора, т. е. . Одну из сил, составляющих пару, приложим в центре приведения О, другую силу в точке С, положение которой определится из условия: . Следовательно .

Расположим пару сил так, чтобы сила F"" была направлена в сторону, противоположную главному вектору F"гл. В точке О имеем две равные взаимнопротивоположные силы F"гл и F"", направленные по одной прямой; их можно отбросить (согласно третьей аксиоме). Следовательно, относительно точки С главный момент рассматриваемой системы сил равен нулю, и система приводится к равнодействующей .

Метод приведения одной силы к данной точке можно применить к какому угодно числу сил. Допустим, что в некото­рых точках тела (рис. 1.24) приложены силы F 1 F 2 , F 3 и F 4 . Тре­буется привести эти силы к точке О плоскости. Приведем сначала силу приложенную в точ­ке А. Приложим (см. § 16) в точке О две силы рав­ные порознь по значению заданной силе параллель­ные ей и направленные в про­тивоположные стороны. В ре­зультате приведения силы получим силу , приложен­ную в точке О, и пару сил с плечом . Поступив таким же образом с силой , приложенной в точке В, получим силу , приложенную в точке О, и пару сил с плечом и т. д. Плоскую систему сил, приложенных в точках А, В, С и D, мы заменили сходящимися силами , приложенными в точке О, и парами сил с моментами, равными моментам заданных сил относительно точки О:

рис.1.24

Сходящиеся в точке силы можно заменить одной силой равной геометрической сумме составляющих,

Эту силу, равную геометрической сумме заданных сил, называют главным вектором системы сил и обозначают .

По величине проекций главного вектора на оси координат находим модуль главного вектора:

На основании правила сложения пар сил их можно заменить результирующей парой, момент которой равен алгебраической сумме моментов заданных сил относительно точки О и называется главным моментом относительно точки приведения

Таким образом, произвольная плоская система сил приводиться к одной силе (главному вектору системы сил) и одному моменту (главному моменту системы сил).

Необходимо усвоить, сто главный вектор не является равнодействующей данной системы сил, так как эта система не эквивалентна одной силе . Так как главный вектор равен геометрической сумме сил заданной системе, то ни модуль, ни направление его не зависит от выбора центра приведения. Значение и знак главного момента зависит от положения центра приведения, так как плечи составляющих пар зависят от взаимного положения сил и точки (центра) относительно которой берутся моменты.

Частные случаи приведения системы сил:

1) ; система находиться в равновесии, т.е. для равновесия плоской системы сил необходимо и достаточно, чтобы ее главный вектор и главный момент одновременно были равны нулю.

Моментом силы F относительно данной точки О называется произведение величины силы на ее плечо, т. е. на длину перпендикуляра, опущенного из точки О на линию действия этой силы.

Если сила F стремится вращать тело вокруг данной точки О в направлении, обратном движению часовой стрелки, то условимся моменг силы F относительно точки О считать положительным; если же сила стремится вращать тело вокруг точки О в направлении, совпадающем с направлением движения часовой стрелки, то момент силы относительно этой точки будем считать отрицательным. Следовательно,

Если линия действия силы F проходит через данную точку О, то момент силы F относительно этой точки равен нулю.

Сложение сил, расположенных как угодно на плоскости, можно выполнить двумя способами:

1) последовательным сложением;

2) приведением данной системы сил к произвольно выбранному центру.

Первый способ становится громоздким при большом числе слагаемых сил и неприменим для пространственной системы сил, второй же способ является общим, более простым и удобным.

Если задана система сил , расположенных как угодно в одной плоскости, то, перенося все эти силы в произвольно выбранную в этой плоскости точку О, называемую центром приведения, получим приложенную в этом центре силу

и пару с моментом

Геометрическая сумма сил данной системы называется равным вектором этой системы сил.

Алгебраическая сумма моментов сил плоской системы относительно какой-нибудь точки О плоскости их действия называется главным моментом этой системы сил относительно этой точки О.

Главный момент изменяется с изменением центра приведения; зависимость главного момента от выбора центра приведения выражается следующей формулой:

где и - два различных центра приведения.

Так как сила R и пара с моментом , получающаяся в результате приведения данной плоской системы сил к центру О, лежат в одной плоскости, то их можно привести к одной силе , приложенной в некоторой точке . Эта сила является равнодействующей данной плоской системы сил.

Таким образом, если , то система сил приводится к одной равнодействующей, не проходящей через центр приведения О. При этом момент равнедействующей относительно любой точки будет равен алгебраической сумме моментов всех данных сил относительно той же точки (теорема Вариньона).

Если начало координат выбрано в центре приведения и известны проекции всех сил на оси координат и координаты точек приложения этих сил, то момент равнодействующей находим по формуле

Если в результате приведения системы сил к данному центру окажется, что главный вектор этой системы рпвен нулю, а главный момент ее отличен от нуля, то данная система эквивалентна паре сил, причем главный момент системы равен моменту этой пары и не зависит в данном случае от выбора центра приведения. Если то система приводится к равнодействующей, приложенной в центре приведения О.

Если и , то система сил находится в равновесии. Все случаи, встречающиеся при сложении сил плоской системы, можно представить в виде табл. 3.

Таблица 3

Равновесие плоской системы сил рассмотрим в следующем параграфе, а теперь перейдем к решению задач на сложение сил плоской системы.

Пример 13. Дана плоская система четырех сил проекции X и Y этих сил на координатные оси, координаты х, у точек их приложения заданы в табл. 4.

Таблица 4

Привести эту систему к началу координат и затем найти линию действия равнодействующей.

Решение. Найдем проекции главного вектора заданной системы сил на координатные оси по формуле (14)

Главный момент находим по формуле (15)

Пусть - точка линии действия искомой равнодействующей . Тогда

С другой стороны, по теореме Вариньона имеем:

Следовательно,

Это и есть уравнение линии действия равнодействующей.

Пример 14. Найти равнодействующую четырех сил, действующих по сторонам правильного шестиугольника, направление которых указано на рис. 30, если .

Решение. Выберем за центр приведения центр О шестиугольника и найдем главный вектор R и главный момент данной системы сил относительно центра О. Так как , то главный вектор R равен , а главный момент

Для того чтобы найти момент силы , относительно точки О, опустим перпендикуляр СМ, из точки О на линию действия этой силы. Так как сила , стремится вращать шестиугольник вокруг точки О по часовой стрелке, то