Накопление газов в атмосфере. Парниковый эффект — причины и последствия. Парниковые газы, влияющие на климат планеты

Парниковый эффект в атмосфере нашей планеты вызван тем, что поток энергии в инфракрасном диапазоне спектра, поднимающийся от поверхности Земли, поглощается молекулами газов атмосферы, и излучается обратно в разные стороны, в результате половина поглощенной молекулами парниковых газов энергии возвращается обратно к поверхности Земли, вызывая её разогрев. Следует отметить, что парниковый эффект - это естественное атмосферное явление (рис.5). Если бы на Земле вообще не было парникового эффекта, то средняя температура на нашей планеты была бы около -21°С, а так, благодаря парниковым газам, она составляет +14°С. Поэтому, чисто теоретически, деятельность человека, сопряжённая с выбросом парниковых газов в атмосферу Земли, должна приводить к дальнейшему разогреву планеты. Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар (36-70%), углекислый газ (9-26%), метан (4-9%), галоуглероды, оксид азота.

Рис.

Угольные электростанции, заводские трубы, автомобильные выхлопы и другие созданные человечеством источники загрязнения вместе выбрасывают в атмосферу около 22 миллиардов тонн углекислого газа и других парниковых газов в год. Животноводство, применение удобрений, сжигание угля и другие источники дают около 250 миллионов тонн метана в год. Около половины всех парниковых газов, выброшенных человечеством, осталось в атмосфере. Около трёх четвертей всех антропогенных выбросов парниковых газов за последние 20 лет вызваны использованием нефти, природного газа и угля (рис.6). Большая часть остального вызвана изменениями ландшафта, в первую очередь вырубкой лесов.

Рис.

Водяной пар - самый главный на сегодня парниковый газ. Однако водяной пар участвует и во множестве других процессов, что делает его роль далеко неоднозначной в разных условиях.

Прежде всего, при испарении с поверхности Земли и дальнейшей конденсации в атмосфере, в нижние слои атмосферы (тропосферу) благодаря конвекции переносится до 40% от всего тепла, поступающего в атмосферу. Таким образом, водяной пар при испарении несколько понижает температуру поверхности. Но выделившееся в результате конденсации в атмосфере тепло идет на ее разогрев, и в дальнейшем, на разогрев и самой поверхности Земли.

Но после конденсации водяного пара образуются водяные капельки либо кристаллики льда, которые интенсивно участвуют в процессах рассеяния солнечного света, отражая часть солнечной энергии назад в космос. Облака, как раз представляющие из себя скопления этих капелек и кристалликов, увеличивают долю солнечной энергии (альбедо), отражаемой самой атмосферой обратно в космос (а дальше осадки из облаков могут выпасть в виде снега, увеличивая альбедо поверхности).

Однако у водяного пара, даже сконденсированного в капельки и кристаллики, все равно остаются мощные полосы поглощения в инфракрасной области спектра, а значит роль тех же облаков далеко не однозначна. Двойственность эта особенно заметна в следующих крайних случаях - при покрытии облаками неба в солнечную летнюю погоду температура на поверхности снижается, а если то же самое происходит зимней ночью, то наоборот, повышается. На окончательный результат влияет и положение облаков - на низких высотах мощная облачность отражает много солнечной энергии, и баланс может быть в данном случае в пользу антипарникового эффекта, а вот на больших высотах, разреженные перистые облака пропускают довольно много солнечной энергии вниз, но даже разреженные облака являются почти непреодолимы препятствием для инфракрасного излучения и, и тут можно говорить о преобладании парникового эффекта.

Еще одна особенность водяного пара - влажная атмосфера в некоторой степени способствует связыванию другого парникового газа - углекислого, и переносу его дождевыми осадками к поверхности Земли, где он в результате дальнейших процессов может быть израсходован в процессах образования карбонатов и горючих полезных ископаемых.

Человеческая деятельность очень слабо непосредственно влияет на содержание водяного пара в атмосфере - только лишь за счет роста площади орошаемых земель, изменения площади болот и работы энергетики, что на фоне испарения со всей водной поверхности Земли и вулканической деятельности ничтожно мало. Из-за этого довольно часто на нем мало акцентируется внимание при рассмотрении проблемы парникового эффекта.

Однако косвенное влияние на содержание водяного пара может быть очень велико, за счет обратных связей между содержанием водяного пара в атмосфере и потеплением, вызванном другими парниковыми газами, что мы сейчас и рассмотрим.

Известно, что при увеличении температуры увеличивается и испарение водяного пара, и на каждые 10 °С возможное содержание водяного пара в воздухе почти удваивается. Например, при 0 °С давление насыщенного пара составляет около 6 мб, при +10 °С - 12 мб, а при +20 °С - 23 мб.

Видно, что содержание водяного пара сильно зависит от температуры, и при понижении ее по каким-либо причинам, во-первых, понижается сам парниковый эффект водяного пара (благодаря уменьшившемуся содержанию), а во-вторых, происходит конденсация водяного пара, которая конечно, сильно тормозит понижение температуры за счет выделения конденсационного тепла, но зато уже после конденсации увеличивается отражение солнечной энергии, как самой атмосферы (рассеяние на капельках и кристаллах льда), так и поверхности (выпадение снега), что дополнительно понижает температуру.

При повышении температуры содержание водяного пара в атмосфере растет, его парниковый эффект увеличивается, что усиливает первоначальное повышение температуры. В принципе, растет и облачность (больше водяного пара попадает в относительно холодные области), однако крайне слабо - по данным И. Мохова порядка 0,4% на градус потепления, что не может сильно повлиять на рост отражения солнечной энергии.

Углекислый газ - второй по вкладу в парниковый эффект на сегодня, не вымораживается при понижении температуры, и продолжает создавать парниковый эффект даже при самых низких температурах, возможных в земных условиях. Вероятно, именно благодаря постепенному накоплению углекислого газа в атмосфере вследствии вулканической деятельности, Земля смогла выйти из состояния мощнейших оледенений (когда даже на экватор был покрыт мощнейшим слоем льда), в которые она попадала в начале и конце протерозоя.

Углекислый газ вовлечен в мощный круговорот углерода в системе литосфера-гидросфера-атмосфера, и изменение земного климата связывают прежде всего с изменением баланса его поступления в атмосферу и выведения из нее.

Благодаря относительно высокой растворимости углекислого газа в воде, содержание углекислого газа в гидросфере (прежде всего океаны) сейчас составляет 4х104 Гт (гигатонн) углерода (отсюда и далее приводятся данные по СО2 в пересчете на углерод), включая глубинные слои (Путвинский, 1998). В атмосфере в настоящее время содержится около 7,5х102 Гт углерода (Алексеев и др., 1999). Небольшим содержание СО2 в атмосфере было далеко не всегда - так в архее (около 3,5 млрд. лет назад) атмосфера состояла почти на 85-90% из углекислого газа, при существенно большем давлении и температуре (Сорохтин, Ушаков, 1997). Однако поступление значительных масс воды на поверхность Земли в результате дегазации недр, а также возникновение жизни обеспечило связывание почти всего атмосферного и значительной части растворенного в воде углекислого газа в виде карбонатов (в литосфере хранится около 5,5х107 Гт углерода (доклад МГЭИК, 2000)). Также углекислый газ стал преобразовываться живыми организмами в различные формы горючих полезных ископаемых. Кроме того, связывание части углекислого газа произошло и за счет накопления биомассы, общие запасы углерода в которой сравнимы с запасами в атмосфере, а учитывая еще и почвы - превышает в несколько раз.

Однако, нас прежде всего интересуют потоки, обеспечивающие поступление углекислого газа в атмосферу, и выводящие его из нее. Литосфера сейчас обеспечивает весьма небольшой поток углекислого газа, поступающего в атмосферу прежде всего благодаря вулканической деятельности - около 0.1 Гт углерода в год (Путвинский, 1998). Значительно большие потоки наблюдаются в системах океан (вместе с обитающими там организмами) - атмосфера, и наземная биота - атмосфера. В океан ежегодно поступает из атмосферы около 92 Гт углерода и 90 Гт возвращается обратно в атмосферу (Путвинский, 1998). Таким образом, океаном ежегодно дополнительно изымается из атмосферы около 2 Гт углерода. В то же время в процессах дыхания и разложения наземных умерших живых существ в атмосферу поступает около 100 Гт углерода в год. В процессах фотосинтеза наземной растительностью изымается из атмосферы тоже около 100 Гт углерода (Путвинский, 1998). Как мы видим, механизм поступления и изъятия углерода из атмосферы достаточно сбалансирован, обеспечивая приблизительно равные потоки. Современная жизнедеятельность человека включает в этот механизм все увеличивающийся дополнительный поток углерода в атмосферу за счет сжигания горючих ископаемых (нефть, газ, уголь и пр.) - по данным, например, за период 1989-99 гг., в среднем около 6,3 Гт в год. Также поток углерода в атмосферу увеличивается и за счет вырубки и частичного сжигания лесов - до 1,7 Гт в год (доклад МГЭИК, 2000), при этом прирост биомассы, способствующий поглощению СО2 составляет всего около 0,2 Гт в год вместо почти 2 Гт в год. Даже учитывая возможность поглощения около 2 Гт дополнительного углерода океаном, все равно остается довольно значимый дополнительный поток (к настоящему времени около 6 Гт в год), увеличивающий содержание углекислого газа в атмосфере. Кроме того, поглощение углекислого газа оканом уже в ближайшем будущем может уменьшится, и даже возможен обратный процесс - выделение углекислого газа из Мирового океана. Это связано с понижением растворимости углекислого газа при повышении температуры воды - так, например, при повышении температуры воды всего с 5 до 10 °С, коэффициент растворимости углекислого газа в ней уменьшается приблизительно с 1,4 до 1,2.

Итак, поток углекислого газа в атмосферу, вызываемый хозяйственной деятельностью не велик по сравнению с некоторыми естественными потоками, однако его нескоменсированность приводит к постепенному накоплению СО2 в атмосфере, что разрушает баланс поступления и изъятия СО2, складывавшийся за миллиарды лет эволюции Земли и жизни на ней.

Многочисленные факты геологического и исторического прошлого свидетельствуют о связи между изменениями климата и колебаниями содержания парниковых газов. В период от 4 до 3,5 млрд. лет назад яркость Солнца была примерно на 30% меньше, чем сейчас. Однако и под лучами молодого, «бледного» Солнца на Земле развивалась жизнь и образовывались осадочные породы: по крайней мере на части земной поверхности температура была выше точки замерзания воды. Некоторые ученые высказывают предположение, что в ту пору в земной атмосфере содержал ось в 1000 раз больше диоксида углерода , чем сейчас, и это компенсировало нехватку солнечной энергии, поскольку больше тепла, излучаемого Землей, оставалось в атмосфере. Усиливавшийся парниковый эффект мог стать одной из причин исключительно теплого климата позднее - в мезозойскую эру (эпоху динозавров). По данным анализа ископаемых остатков на Земле в ту пору было на 10-15 ос теплее, чем сейчас. Следует заметить, что тогда, 100 млн. лет назад и раньше, континенты занимали иное положение, чем в наше время, и океаническая циркуляция также была иной, поэтому перенос тепла от тропиков в полярные районы мог быть больше. Однако расчеты, выполненные Эриком Дж. Барроном, работающим сейчас в Пенсильванском университете, и другими исследователями, показывают, что с палеоконтинентальной географией могло быть связано не более половины мезозойского потепления. Остающуюся часть потепления легко объяснить ростом содержания диоксида углерода. Это предположение было впервые выдвинуто советскими учеными А. Б. Роновым из Государственного гидрологического института и М. И. Будыко из Главной геофизической обсерватории. Расчеты, подтверждающие это предложение, были проведены Эриком Барроном, Старли Л. Томпсоном из Национального центра атмосферных исследований (NCAR). Из геохимической модели, разработанной Робертом А. Бернером и Антонио К. Ласагой из Йельского университета и ныне покойным Робертом. Поля в штате Техас превратились в пустыню, после того как здесь в 1983 г. некоторое время продержалась засуха Такую картину, как показывают расчеты по компьютерным моделям, можно будет наблюдать во многих местах, если в результате глобального потепления уменьшится влажность почвы в центральных районах континентов, где сосредоточено производство зерна.

М. Гаррелсом из Университета Южной Флориды, следует, что диоксид углерода мог выделяться при исключительно сильной вулканической активности на срединно-океанических хребтах, где поднимающаяся магма формирует новое океаническое дно. Прямые свидетельства, указывающие на связь во время оледенений между содержанием в атмосфере парниковых газов и климатом, можно «извлечь» из пузырьков воздуха, включенных в антарктический лед, который образовался в древние эпохи в результате спрессовывания падающего снега. Группа исследователей, возглавляемая Клодом Лорью из Лаборатории гляциологии и геофизики в Гренобле, изучила колонку льда длиной 2000 м (соответствующую периоду продолжительностью 160 тыс. лет), полученную советскими исследователями на станции «Восток» в Антарктиде. Лабораторный анализ газов, заключенных в этой колонке льда, показал, что в древней атмосфере концентрации диоксида углерода и метана менялись согласованно и, что более важно, «в такт» с изменениями средней локальной температуры (она была определена по отношению концентраций изотопов водорода в молекулах воды). Во время последнего межледникового периода, продолжающегося уже 10 тыс. лет, и в предшествующее ему межледниковье (130 тыс. лет назад) продолжительностью также 10 тыс. лет, средняя температура в этом районе была на 10 ос выше, чем во время оледенений. (В целом на Земле в указанные периоды было на 5 ос теплее.) В эти же периоды в атмосфере содержал ось на 25% больше диоксида углерода и на 100070 больше метана, чем во время оледенений. Неясно, было ли причиной изменение содержания парниковых газов, а следствием климатические изменения или наоборот. Скорее всего, причиной оледенений были изменения орбиты Земли и особая динамика продвижения и отступания ледников; однако эти климатические колебания могли усиливаться благодаря изменениям биоты и колебаниям океанической циркуляции, влияющим на содержание парниковых газов в атмосфере. Еще более подробные данные о флуктуациях содержания парниковых газов и изменениях климата имеются для последних 100 лет, за которые произошло дальнейшее увеличение на 25% концентрации диоксида углерода и на 100% метана. «Записи» средней температуры на земном шаре для последних 100 лет были изучены двумя группами исследователей, возглавляемыми Джеймсом Э. Хансеном из Годдардовского института космических исследований Национального управления по аэронавтике и исследованию космического пространства, и Т. М. Л. Уигли из Отдела климата Университета Восточной Англии.

Задержка тепла атмосферой - основной компонент энергетического баланса Земли (рис.8). Примерно 30% энергии, поступающей от Солнца, отражается (слева) либо от облаков, либо от частиц, либо от поверхности Земли; остальные 70% поглощаются. Поглощенная энергия переизлучается в инфракрасном диапазоне поверхностью планеты.

Рис.

Эти ученые воспользовались данными измерений на метеостанциях, разбросанных по всем континентам (группа из Отдела климата включила также в анализ данные измерений на море). Вместе с тем в двух группах были приняты разные методики анализа наблюдений и учета «искажений», связанных, например, с тем, что некоторые метеостанции за сто лет «переехали» на другое место, а некоторые, расположенные в городах, давали данные, «загрязненные» влиянием тепла, выделяемого промышленными предприятиями или накапливаемого за день зданиями и мостовой. Последний эффект, приводящий к появлению «островов тепла», очень заметен в развитых странах, например в США. Вместе с тем, даже если рассчитанную для США поправку (она была получена Томасом Р. Карлом из Национального центра климатических данных в Эшвилле, шт. Северная Каролина, и П. Д. Джоунсом из Университета Восточной Англии) распространить на все данные по земному шару, в обеих записях останется «<реальное» потепление величиной 0,5 О С, относящееся к последним 100 годам. В согласии с общей тенденцией 1980-е годы остаются самым теплым десятилетием, а 1988, 1987 и 1981 гг. - наиболее теплыми годами (в порядке перечисления). Можно ли считать это «сигналом» парникового потепления? Казалось бы, можно, однако в действительности факты не столь однозначны. Возьмем для примера такое обстоятельство: вместо неуклонного потепления, какое можно ожидать от парникового эффекта, быстрое повышение температуры, происходившее до конца второй мировой войны, сменилось небольшим похолоданием, продлившимся до середины 1970-х годов, за которым последовал второй период быстрого потепления, продолжающийся по сей день. Какой характер примет изменение температуры в ближайшее время? Чтобы дать такой прогноз, необходимо ответить на три вопроса. Какое количество диоксида углерода и других парниковых газов будет выброшено в атмосферу? Насколько при этом возрастет концентрация этих газов в атмосфере? Какой климатический эффект вызовет это повышение концентрации, если будут действовать естественные и антропогенные факторы, которые могут ослаблять или усиливать климатические изменения? Прогноз выбросов - нелегкая задача для исследователей, занимающихся анализом человеческой деятельности. Какое количество диоксида углерода попадет в атмосферу, зависит главным образом от того, сколько ископаемого топлива будет сожжено и сколько лесов вырублено (последний фактор ответствен за половину прироста парниковых газов с 1800 г. и за 20070прироста в наше время). И тот и другой фактор зависят в свою очередь от множества причин. Так, на потреблении ископаемого топлива сказываются рост населения, переход к альтернативным источникам энергии и меры по экономии энергии, а также состояние мировой экономики. Прогнозы в основном сводятся к тому, что потребление ископаемого топлива на земном шаре в целом будет увеличиваться примерно с той же скоростью, что и сегодня намного медленнее, чем до энергетического кризиса 1970-х годов. В результате эмиссия (поступление в атмосферу) диоксида углерода в ближайшие несколько десятилетий, будет увеличиваться на 0,5-2070 в год. Другие парниковые газы, такие как ХФУ, оксиды азота и тропосферный озон, могут вносить в потепление климата почти столь же большой вклад, что и диоксид углерода, хотя в атмосферу их попадает значительно меньше: объясняется это тем, что они более эффективно поглощают солнечную радиацию. Предсказать, какова будет эмиссия этих газов - задача еще более трудная. Так, например, не вполне ясно происхождение некоторых газов, в частности метана; величина выбросов других газов, таких как ХФУ или озон, будет зависеть от того, какие изменения в технологии и политике произойдут в ближайшем будущем.

Обмен углеродом между атмосферой и различными «резервуарами» на Земле (рис.9). Каждое число указывает в миллиардах тонн приход или уход углерода (в форме диоксида) за год или его запас в резервуаре. В этих естественных циклах, один из которых «замыкается» на сушу,а другой на океан, из атмосферы удаляется ровно столько диоксида углерода, сколько в нее поступает, однако человеческая деятельность - сведение лесов и сжигание ископаемого топлива - приводит к тому, что содержание углерода в атмосфере ежегодно повышается на 3 млрд. тонн. Данные заимствованы из работы Берта Болина, работающего в Стокгольмском университете


Рис.9

Предположим, мы имеем разумный прогноз того, как будет изменяться эмиссия диоксида углерода. Какие изменения в этом случае произойдут с концентрацией этого газа в атмосфере? Атмосферный диоксид углерода «потребляется» растениями, а также океаном, где он расходуется на химические и биологические процессы. С изменением концентрации атмосферного диоксида углерода будет, вероятно, меняться и скорость «потребления» этого газа. Иными словами, процессы, обусловливающие изменение содержания атмосферного диоксида углерода, должны включать обратную связь. Диоксид углерода является «сырьем» для фотосинтеза в растениях, поэтому потребление его растениями скорее всего будет увеличиваться с накоплением его в атмосфере, что замедлит это накопление. Аналогично этому, поскольку содержание диоксида углерода в поверхностных водах океана находится в примерном равновесии с его содержанием в атмосфере, увеличение поглощения диоксида углерода океанской водой приведет к замедлению его накопления в атмосфере. Может случиться, однако, что накопление в атмосфере диоксида углерода и других парниковых газов приведет в действие механизмы положительной Обратной связи, которые будут усиливать климатический эффект. Так, быстрые изменения климата могут привести к исчезновению части лесов и других экосистем, что ослабит способность биосферы поглощать диоксид углерода. Более того, потепление может привести к быстрому высвобождению углерода, содержащегося в почве в составе мертвой органической материи. Этот углерод, количество которого вдвое выше, чем в атмосфере, постоянно превращается в диоксид углерода и метан под действием почвенных бактерий. Потепление может ускорить их «работу», в результате чего ускорится выделение диоксида углерода (из сухих почв) и метана (из районов, занятых рисовыми полями, из свалок и заболоченных земель). Довольно много" метана запасено также в осадках на континентальном шельфе и ниже слоя вечной мерзлоты в Арктике в виде клатратов - молекулярных решеток, состоящих из молекул метана и воды. Потепление шельфовых вод и таяние вечной мерзлоты могут привести к высвобождению метана. Несмотря на указанные неопределенности, многие исследователи считают, что поглощение диоксида углерода растениями и океаном замедлит накопление этого газа в атмосфере - по крайней мере в ближайшие 50-100 лет. Типичные оценки, основанные на существующей в настоящее время скорости эмиссии, показывают, что из всего количества диоксида углерода, попадающего в атмосферу, оставаться там будет примерно половина. Из этого следует, что удвоение концентрации диоксида углерода по сравнению с 1900 г. (до уровня 600 млн. произойдет примерно между 2030 и 2080 гг. Вместе с тем другие парниковые газы будут, скорее всего, накапливаться в атмосфере быстрее.


Атмосфера (от греч. atmoc - пар и сфера - шар) - газовая (воздушная) оболочка Земли, вращающаяся вместе с ней. Жизнь на Земле возможна, пока существует атмосфера. Все живые организмы используют воздух атмосферы для дыхания, атмосфера защищает от вредного воздействия космических лучей и губительной для живых организмов температуры, холодного «дыхания» космоса.

Атмосферный воздух - это смесь газов, из которых состоит атмосфера Земли. Воздух не имеет запаха, прозрачен, его плотность 1,2928 г/л, растворимость в воде 29,18 см~/л, в жидком состоянии приобретает голубоватую окраску. Жизнь людей невозможна без воздуха, без воды и пищи, но если без пищи человек может прожить несколько недель, без воды - несколько дней, то смерть от удушья наступает через 4 - 5 мин.

Основными составными частями атмосферы являются: азот, кислород, аргон и углекислый газ. Кроме аргона в малых концентрациях содержатся другие инертные газы. В атмосферном воздухе всегда присутствуют пары воды (примерно 3 - 4%) и твердые частицы - пыль.

Атмосфера Земли подразделяется на нижнюю (до 100 км) - гомосферу с однородным составом приземного воздуха и верхнюю гетеросферу с неоднородным химическим составом. Одним из важных свойств атмосферы является наличие кислорода. В первичной атмосфере Земли кислород отсутствовал. Появление и накопление его связано с распространением зеленых растений и процессом фотосинтеза. В результате химического взаимодействия веществ с кислородом живые организмы получают энергию, необходимую для их жизнедеятельности.

Через атмосферу осуществляется обмен веществ между Землей и Космосом, при этом Земля получает космическую пыль и метеориты и теряет самые легкие газы - водород и гелий. Атмосфера пронизана мощной солнечной радиацией, которая определяет тепловой режим поверхности планеты, вызывает диссоциацию молекул атмосферных газов и ионизацию атомов. Обширная разреженная верхняя часть атмосферы состоит преимущественно из ионов.

Физические свойства и состояние атмосферы меняются во времени: в течение суток, сезонов, лет - и в пространстве в зависимости от высоты над уровнем моря, широты местности, удаленности от океана.

Строение атмосферы

Атмосфера, общая масса которой составляет 5,15 10» т, простирается вверх от поверхности Земли примерно до 3 тыс. км. С высотой меняются химический состав и физические свойства атмосферы, поэтому ее подразделяют на тропосферу, стратосферу, мезосферу, ионосферу (термосферу) и экзосферу.

Основная масса воздуха в атмосфере (до 80%) находится в нижнем, приземном слое - тропосфере. Толщина тропосферы в среднем 11 - 12 км: 8 - 10 км - над полюсами, 16 - 18 км - над экватором. При удалении от поверхности Земли в тропосфере происходит понижение температуры на 6"С на 1 км (рис. 8). На высоте 18 - 20 км плавное уменьшение температуры прекращается, она остается почти постоянной: - 60...- 70"С. Этот участок атмосферы называется тропопаузой. Следующий слой - стратосфера - занимает высоту 20 - 50 км от земной поверхности. В ней сосредоточена остальная (20%) часть воздуха. Здесь температура повышается при удалении от поверхности Земли на 1 - 2"С на 1 км и в стратопаузе на высоте 50 - 55 км доходит до 0"С. Далее на высоте 55- 80 км расположена мезосфера. При удалении от Земли температура понижается на 2 - 3"С на 1 км, и на высоте 80 км, в мезопаузе, она достигает - 75...- 90"С. Термосфера и экзосфера, занимающие высоты соответственно 80 - 1000 и 1000 - 2000 км, представляют собой наиболее разреженные части атмосферы. Здесь встречаются лишь отдельные молекулы, атомы и ионы газов, плотность которых в миллионы раз меньше, чем у поверхности Земли. Следы газов обнаружены до высоты 10 - 20 тыс. км.

Толщина воздушной оболочки сравнительно невелика при сопоставлении с космическими расстояниями: она составляет одну четвертую радиуса Земли и одну десятитысячную часть расстояния от Земли до Солнца. Плотность атмосферы на уровне моря равна 0,001 г/см~, т.е. в тысячу раз меньше плотности воды.

Между атмосферой, земной поверхностью и другими сферами Земли происходит постоянный обмен теплом, влагой и газами, который вместе с циркуляцией воздушных масс в атмосфере влияет на основные климатообразующие процессы. Атмосфера защищает живые организмы от мощного потока космического излучения. Ежесекундно на верхние слои атмосферы обрушивается поток космических лучей: гамма, рентгеновские, ультрафиолетовые, видимые, инфракрасные. Если бы все они достигали земной поверхности, то в течение нескольких мгновений уничтожили бы все живое.

Важнейшее защитное значение имеет озоновый экран. Он расположен в стратосфере на высоте от 20 до 50 км от поверхности Земли. Общее количество озона (Оз) в атмосфере оценивается в 3,3 млрд. т. Мощность этого слоя сравнительно небольшая: суммарно она составляет 2 мм на экваторе и 4 мм у полюсов при нормальных условиях. Максимальная концентрация озона - 8 частей на миллион частей воздуха - находится на высоте 20 - 25 км.

Основное значение озонового экрана состоит в том, что он защищает живые организмы от жесткого ультрафиолетового излучения. Часть его энергии расходуется на реакцию: SО2 ↔ SО3. Озоновый экран поглощает ультрафиолетовые лучи с длиной волны около 290 нм и менее, поэтому до земной поверхности доходят ультрафиолетовые лучи, полезные для высших животных и человека и губительные для микроорганизмов. Разрушение озонового слоя, замеченное в начале 1980-х гг., объясняют применением фреонов в холодильных установках и выбросом в атмосферу аэрозолей, применяемых в быту. Выбросы фреонов в мире тогда достигали 1,4 млн. т в год, а вклад отдельных стран в загрязнение атмосферы фреонами составлял: 35% - США, по 10% - Япония и Россия, 40% - страны ЕЭС, 5% - остальные страны. Согласованные меры позволили сократить поступление фреонов в атмосферу. Разрушительное воздействие на озоновый слой оказывают полеты сверхзвуковых самолетов и космических аппаратов.

Атмосфера защищает Землю от многочисленных метеоритов. Ежесекундно в атмосферу попадает до 200 млн. метеоритов, доступных для наблюдения невооруженным глазом, но они сгорают в атмосфере. Замедляют свое движение в атмосфере мелкие частицы космической пыли. Ежесуточно на Землю опускается около 10" мелких метеоритов. Это приводит к увеличению массы Земли на 1 тыс. т. в год. Атмосфера является теплоизоляционным фильтром. Без атмосферы перепад температур на Земле в сутки достигал бы 200"С (от 100"С днем до - 100"С ночью).

Баланс газов в атмосфере

Наибольшее значение для всех живых организмов имеет относительно постоянный состав атмосферного воздуха в тропосфере. Баланс газов в атмосфере поддерживается за счет постоянно идущих процессов использования их живыми организмами и поступления газов в атмосферу. Азот выделяется при мощных геологических процессах (извержениях вулканов, землетрясениях), при разложении органических соединений. Изъятие азота из воздуха происходит за счет деятельности клубеньковых бактерий.

Однако в последние годы происходит изменение баланса азота в атмосфере за счет хозяйственной деятельности людей. Заметно увеличилось связывание азота при производстве азотных удобрений. Предполагают, что объем промышленной фиксации азота в ближайшее время значительно возрастет и превысит его поступление в атмосферу. Согласно прогнозам производство азотных удобрений удваивается каждые 6 лет. Эго обеспечивает растущие потребности сельского хозяйства в азотных удобрениях. Однако нерешенным остается вопрос компенсации изъятия азота из атмосферного воздуха. В то же время из-за огромного общего количества азота в атмосфере эта проблема не столь серьезна, как баланс кислорода и диоксида углерода.

Около 3,5 - 4 млрд. лет назад содержание кислорода в атмосфере было в 1000 раз меньше, чем сейчас, так как не было основных продуцентов кислорода - зеленых растений. Современное соотношение кислорода и диоксида углерода поддерживается жизнедеятельностью живых организмов. В результате фотосинтеза зеленые растения потребляют диоксид углерода и выделяют кисло- род. Он используется для дыхания всеми живыми организмами. Естественные процессы потребления СО3 и О2 и их поступление в атмосферу хорошо сбалансированы.

С развитием промышленности и транспорта кислород используется на процессы горения все в возрастающих размерах. Например, за один трансатлантический рейс реактивный самолет сжигает 35 т кислорода. Легковой автомобиль за 1,5 тыс. км пробега расходует суточную норму кислорода одного человека (в среднем человек потребляет в сутки 500 л кислорода, пропуская через легкие 12 т воздуха). По подсчетам специалистов, на сгорание разнообразных видов топлива сейчас требуется от 10 до 25% кислорода, производимого зелеными растениями. Уменьшается поступление кислорода в атмосферу из-за сокращения площадей лесов, саванн, степей и увеличения пустынных территорий, роста городов, транспортных магистралей. Сокращается число продуцентов кислорода среди водных растений из-за загрязнения рек, озер, морей и океанов. Полагают, что в ближайшие 150 - 180 лет количество кислорода в атмосфере сократится на треть по сравнению с современным его содержанием.

Использование запасов кислорода увеличивается одновременно с эквивалентным ростом выделения диоксида углерода в атмосферу. По данным ООН, за последние 100 лет количество СО~ в атмосфере Земли увеличилось на 10 - 15%. Если намеченная тенденция сохранится, то в третьем тысячелетии количество СО~ в атмосфере может возрасти на 25%, т.е. с 0,0324 до 0,04% объема сухого атмосферного воздуха. Некоторое увеличение диоксида углерода в атмосфере сказывается положительно на продуктивности сельскохозяйственных растений. Так, при насыщении воздуха теплиц углекислым газом урожайность овощей повышается за счет интенсификации процесса фотосинтеза. Однако с увеличением COz в атмосфере возникают сложные глобальные проблемы, которые будут рассмотрены ниже.

Атмосфера является одним из основных метеорологических и климатообразующих факторов. Климатообразующая система включает в себя атмосферу, океан, поверхность суши, криосферу и биосферу. Подвижность и инерционные характеристики этих составляющих различны, они имеют разное время реакции на внешние возмущения в смежных системах. Так, для атмосферы и поверхности суши время ответной реакции составляет несколько недель или месяцев. С атмосферой связаны циркуляционные процессы переноса влаги и тепла, циклоническая деятельность.



Проблема парникового эффекта особенно актуальна в нашем веке, когда мы уничтожаем леса, чтобы построить еще один промышленный завод, а многие из нас не представляют жизни без машины. Мы, как страусы, прячем голову в песок, не замечая вреда от нашей деятельности. Тем временем парниковый эффект усиливается и приводит к глобальным катастрофам.

Явление парникового эффекта существовало с момента появления атмосферы, хотя и не было столь заметным. Тем не менее изучение его началось задолго до активного использования автомобилей и .

Краткое определение

Парниковый эффект – повышение температуры нижних слоев атмосферы планеты вследствие накопления парниковых газов. Механизм его таков: солнечные лучи проникают в атмосферу, нагревают поверхность планеты.

Тепловое излучение, которое исходит от поверхности, должно вернуться в космос, но нижний слой атмосферы слишком плотный для их проникновения. Причина этому – парниковые газы. Тепловые лучи задерживаются в атмосфере, повышают ее температуру.

История исследований парникового эффекта

Впервые о явлении заговорили в 1827 году. Тогда появилась статья Жана Батиста Жозефа Фурье «Записка о температурах земного шара и других планет», где он подробно изложил свои представления о механизме парникового эффекта и причины его появления на Земле. В своих исследованиях Фурье опирался не только на собственные эксперименты, но и на суждения М. Де Соссюра. Последний проводил опыты с зачерненным изнутри стеклянным сосудом, закрытым и поставленным под солнечный свет. Температура внутри сосуда была гораздо выше, чем снаружи. Это объясняется таким фактором: тепловое излучение не может пройти сквозь затемненное стекло, а значит, остается внутри емкости. При этом солнечный свет смело проникает через стенки, так как снаружи сосуд остается прозрачным.

Несколько формул

Суммарная энергия солнечного излучения, поглощаемого в единицу времени планетой радиусом R и сферическим альбедо A, равна:

E = πR2 { E_0 over R2} (1 – A) ,

где E_0 – солнечная постоянная, и r – расстояние до Солнца.

В соответствии с законом Стефана–Больцмана равновесное тепловое излучение L планеты с радиусом R, то есть площадью излучающей поверхности 4πR2:

L=4πR2 σТЕ^4 ,

где ТЕ – эффективная температура планеты.

Причины возникновения

Природа явления объясняется различной прозрачностью атмосферы для излучения из космоса и от поверхности планеты. Для солнечных лучей атмосфера планеты прозрачна, как стекло, и поэтому они легко проходят сквозь нее. А для теплового излучения нижние слои атмосферы «непробиваемы», слишком плотные для прохождения. Потому-то часть теплового излучения остается в атмосфере, постепенно опускаясь к самым нижним ее слоям. При этом количество парниковых газов, уплотняющих атмосферу, растет.

Еще в школе нас учили, что основная причина парникового эффекта – деятельность человека. Эволюция привела нас к промышленности, мы сжигаем тонны угля, нефти и газа, получаем топливо, Следствие этого – выделение парниковых газов и веществ в атмосферу. Среди них – водяной пар, метан, углекислый газ, оксид азота. Почему они так названы, понятно. Поверхность планеты нагревается солнечными лучами, но обязательно «отдает» часть тепла обратно. Тепловое излучение, которое исходит от поверхности Земли, называется инфракрасным.

Парниковые газы в нижней части атмосферы не дают тепловым лучам вернуться в космос, задерживают их. Вследствие этого средняя температура планеты увеличивается, и это ведет к опасным последствиям.

Неужели ничто не может урегулировать количество парниковых газов в атмосфере? Конечно, может. С этим заданием отлично справляется кислород. Но вот беда – количество населения планеты неумолимо растет, а значит, поглощается все больше кислорода. Единственное наше спасение – растительность, особенно леса. Они поглощают избыточный углекислый газ, выделяют гораздо большее количество кислорода, чем потребляют люди.

Парниковый эффект и климат Земли

Когда мы говорим о последствиях парникового эффекта, мы понимаем влияние его на климат Земли. В первую очередь – это глобальное потепление. Многие отождествляют понятия «парниковый эффект» и «глобальное потепление», но они не равны, а взаимосвязаны: первое – причина второго.

Глобальное потепление напрямую связано с Мировым океаном. Вот пример двух причинно-следственных связей.

  1. Средняя температура планеты растет, жидкость начинает испаряться. Это касается и Мирового океана: некоторые ученые боятся, что через пару сотен лет он начнет «высыхать».
  2. При этом из-за высокой температуры ледники и морские льды начнут активно таять уже в ближайшее время. Это приведет к неизбежному росту уровня Мирового океана.

Мы уже наблюдаем регулярные потопы в прибрежных районах, но если уровень Мирового океана существенно возрастет, затоплены будут все приближенные участки суши, погибнет урожай.

Влияние на жизнь людей

Не стоит забывать, что повышение средней температуры Земли отразится и на нашей жизни. Последствия могут быть очень серьёзными. Многие территории нашей планеты, и так склонные к засухе, станут абсолютно не жизнеспособными, люди начнут массово мигрировать в другие регионы. Это неизбежно приведет к социально-экономическим проблемам, к началу третьей и четвертой мировых войн. Недостаток продовольствия, уничтожение урожаев – вот что ждет нас в ближайшее столетие.

Но обязательно ли ждет? Или все-таки можно что-то изменить? Может ли человечество снизить вред от парникового эффекта?

Действия, способные спасти Землю

На сегодняшний день известны все вредные факторы, которые приводят к накоплению парниковых газов, и мы знаем, что нужно делать, чтобы это остановить. Не стоит думать, что один человек ничего не изменит. Конечно, эффекта может добиться только все человечество, но кто знает – может, еще сотня людей в этот момент читает подобную статью?

Сохранение лесов

Остановка вырубки лесов. Растения – наше спасение! Кроме того, нужно не только сохранять существующие леса, но и активно высаживать новые.

Понять эту проблему должен каждый человек.

Фотосинтез настолько силен, что способен обеспечить нас огромным количеством кислорода. Его хватит для нормальной жизни людей и устранения вредных газов из атмосферы.

Использование электромобилей

Отказ от использования автомобилей на топливе. Каждый автомобиль выделяет огромное количество парниковых газов в год, так почему бы не сделать выбор в пользу здоровья окружающей среды? Ученые уже предлагают нам электромобили – экологически чистые машины, которые не используют топливо. Минус «топливный» автомобиль – еще один шаг к устранению парниковых газов. Во всем мире пытаются ускорить этот переход, но пока современные разработки таких машин далеки от совершенства. Даже в Японии, где наибольшее использование таких автомобилей, не готовы полностью переходить на их использование.

Альтернатива углеводородному топливу

Изобретение альтернативной энергии. Человечество не стоит на месте, так почему же мы «застряли» на использовании угля, нефти и газа? Сжигание этих природных компонентов приводит к накоплению парниковых газов в атмосфере, поэтому пора перейти на экологически чистый вид энергии.

Мы не можем полностью отказаться от всего того, что выделяет вредные газы. Зато мы можем способствовать увеличению кислорода в атмосфере. Не только настоящий мужчина должен посадить дерево – это обязан сделать каждый человек!

Состав Земли. Воздух

Воздух - это механическая смесь из различных газов, составляющих атмосферу Земли. Воздух необходим для дыхания живых организмов, находит широкое применение в промышленности.

То, что воздух представляет собой именно смесь, а не однородную субстанцию, было доказано в ходе экспериментов шотландского учёного Джозефа Блэка. В ходе одного из них учёный обнаружил, что при нагревании белой магнезии (углекислый магний) выделяется «связанный воздух», то есть углекислый газ, и образуется жжёная магнезия (окись магния). При обжиге известняка, напротив, происходит удаление «связанного воздуха». На основе этих экспериментов учёный сделал вывод, что различие между углекислыми и едкими щелочами заключается в том, что в состав первых входит углекислый газ, являющийся одной из составных частей воздуха. Сегодня же мы знаем, что кроме углекислого, в состав земного воздуха входят:

Указанное в таблице соотношение газов в земной атмосфере характерно для её нижних слоёв, до высоты 120 км. В этих областях лежит хорошо перемешанная, однородная по составу область, называемая гомосферой. Выше гомосферы лежит гетеросфера, для которой характерно разложение молекул газов на атомы и ионы. Области отделены друг от друга турбопаузой.

Химическая реакция, при которой под воздействием солнечного и космического излучения происходит разложение молекул на атомы, называется фотодиссоциацией. При распаде молекулярного кислорода образуется атомарный кислород, являющийся основным газом атмосферы на высотах свыше 200 км. На высотах от 1200 км начинают преобладать водород и гелий, являющиеся наиболее лёгкими из газов.

Поскольку основная масса воздуха сосредоточена в 3 нижних атмосферных слоях, изменения состава воздуха на высотах более 100 км не оказывают заметного влияния на общий состав атмосферы.

Азот - самый распространенный газ, на долю которого приходится более трёх четвертей объёма земного воздуха. Современный азот образовался при окислении ранней аммиачно-водородной атмосферы молекулярным кислородом, который образуется в процессе фотосинтеза. В настоящее время небольшое количество азота в атмосферу поступает в результате денитрификации - процесса восстановления нитратов до нитритов, с последующим образованием газообразных оксидов и молекулярного азота, который производится анаэробными прокариотами. Часть азота в атмосферу поступает при вулканических извержениях.

В верхних слоях атмосферы при воздействии электрических разрядов при участии озона молекулярный азот окисляется до монооксида азота:

N 2 + O 2 → 2NO

В обычных условиях монооксид тотчас же вступает в реакцию с кислородом с образованием закиси азота:

2NO + O 2 → 2N 2 O

Азот является важнейшим химическим элементом земной атмосферы. Азот входит в состав белков, обеспечивает минеральное питание растений. Он определяет скорость биохимических реакций, играет роль разбавителя кислорода.

Вторым по распространённости газом атмосферы Земли является кислород. Образование этого газа связывают с фотосинтезирующей деятельностью растений и бактерий. И чем более разнообразными и многочисленными становились фотосинтезирующие организмы, тем более значительным становился процесс содержания кислорода в атмосфере. Небольшое количество тяжёлого кислорода выделяется при дегазации мантии.

В верхних слоях тропосферы и стратосферы под воздействием ультрафиолетового солнечного излучения (обозначим его как hν) образуется озон:

O 2 + hν → 2O

В результате действия того же ультрафиолетового излучения происходит и распад озона:

О 3 + hν → О 2 + О

О 3 + O → 2О 2

В результате первой реакции образуется атомарный кислород, в результате второй - молекулярный кислород. Все 4 реакции носят название «механизм Чепмена», по имени британского учёного Сидни Чепмена открывшего их в 1930 году.

Кислород служит для дыхания живых организмов. С его помощью происходят процессы окисления и горения.

Озон служит для защиты живых организмов от ультрафиолетового излучения, которое вызывает необратимые мутации. Наибольшая концентрация озона наблюдается в нижней стратосфере в пределах т.н. озонового слоя или озонового экрана, лежащего на высотах 22-25 км. Содержание озона невелико: при нормальном давлении весь озон земной атмосферы занимал бы слой толщиной всего 2,91 мм.

Образование третьего по распространенности в атмосфере газа аргона, а также неона, гелия, криптона и ксенона связывают с вулканическими извержениями и распадом радиоактивных элементов.

В частности гелий является продуктом радиоактивного распада урана, тория и радия: 238 U → 234 Th + α, 230 Th → 226 Ra + 4 He, 226 Ra → 222 Rn + α (в этих реакция α-частица является ядром гелия, которая в процессе потери энергии захватывает электроны и становится 4 He).

Аргон образуется в процессе распада радиоактивного изотопа калия: 40 K → 40 Ar + γ.

Неон улетучивается из изверженных пород.

Криптон образуется как конечный продукт распада урана (235 U и 238 U) и тория Th.

Основная масса атмосферного криптона образовалась ещё на ранних стадиях эволюции Земли как результат распада трансурановых элементов с феноменально малым периодом полураспада или поступила из космоса, содержание криптона в котором в десять миллионов раз выше чем на Земле.

Ксенон является результатом деления урана, но основная масса этого газа осталась с ранних стадий образования Земли, от первичной атмосферы.

Углекислый газ поступает в атмосферу в результате вулканических извержений и в процессе разложения органического вещества. Его содержание в атмосфере средних широт Земли сильно различается в зависимости от сезонов года: зимой количество CO 2 возрастает, а летом - снижается. Связано данное колебание с деятельностью растений, которые используют углекислый газ в процессе фотосинтеза.

Водород образуется в результате разложения воды солнечным излучением. Но, будучи самым лёгким из газов, входящих в состав атмосферы, постоянно улетучивается в космическое пространство, и потому содержание его в атмосфере очень невелико.

Водяной пар является результатом испарения воды с поверхности озёр, рек, морей и суши.

Концентрация основных газов в нижних слоях атмосферы, за исключением водяных паров и углекислого газа, постоянна. В небольших количествах в атмосфере содержатся оксид серы SO 2 , аммиак NH 3 , монооксид углерода СО, озон O 3 , хлороводород HCl, фтороводород HF, монооксид азота NO, углеводороды, пары ртути Hg, йода I 2 и многие другие. В нижнем атмосферном слое тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц.

Источниками твёрдых частиц в атмосфере Земли являются вулканические извержения, пыльца растений, микроорганизмы, а в последнее время и деятельность человека, например, сжигание ископаемого топлива в процессе производства. Мельчайшие частицы пыли, которые являющиеся ядрами конденсации, служат причинами образования туманов и облаков. Без твёрдых частиц, постоянно присутствующих в атмосфере, на Землю не выпадали бы осадки.

Атмосфера – это воздушная оболочка Земли. Простирающаяся вверх на 3000 км от земной поверхности. Ее следы прослеживаются до высоты до 10 000 км. А. имеет неравномерную плотности 50 5 ее массы сосредоточены до 5 км, 75 % – до 10 км, 90 % до 16 км.

Атмосфера состоит из воздуха – механической смеси нескольких газов.

Азот (78 %) в атмосфере играет роль разбавителя кислорода, регулируя темп окисления, а, следовательно, скорость и напряженность биологических процессов. Азот – главный элемент земной атмосферы, который непрерывно обменивается с живым веществом биосферы, причем составными частями последнего служат соединения азота (аминокислоты, пурины и др.). Извлечение азота из атмосферы происходит неорганическим и биохимическим путями, хотя они тесно взаимосвязаны. Неорганическое извлечение связано с образованием его соединений N 2 O, N 2 O 5 , NO 2 , NH 3 . Они находятся в атмосферных осадках и образуются в атмосфере под действием электрических разрядов во время гроз или фотохимических реакций под влиянием солнечной радиации.

Биологическое связывание азота осуществляется некоторыми бактериями в симбиозе с высшими растениями в почвах. Азот также фиксируется некоторыми микроорганизмами планктона и водорослями в морской среде. В количественном отношении биологическое связывание азота превышает его неорганическую фиксацию. Обмен всего азота атмосферы происходит примерно в течение 10 млн. лет. Азот содержится в газах вулканического происхождения и в изверженных горных породах. При нагревании различных образцов кристаллических пород и метеоритов азот освобождается в виде молекул N 2 и NH 3 . Однако главной формой присутствия азота, как на Земле, так и на планетах земной группы, является молекулярная. Аммиак, попадая в верхние слои атмосферы, быстро окисляется, высвобождая азот. В осадочных горных породах он захороняется совместно с органическим веществом и находится в повышенном количестве в битуминозных отложениях. В процессе регионального метаморфизма этих пород азот в различной форме выделяется в атмосферу Земли.

Геохимический круговорот азота (

Кислород (21 %) используется живыми организмами для дыхания, входит в состав органического вещества (белки, жиры, углеводы). Озон О 3 . задерживает губительную для жизни ультрафиолетовую радиацию Солнца.

Кислород – второй по распространению газ атмосферы, играющий исключительно важную роль во многих процессах биосферы. Господствующей формой его существования является О 2 . В верхних слоях атмосферы под влиянием ультрафиолетовой радиации происходит диссоциация молекул кислорода, а на высоте примерно 200 км отношение атомарного кислорода к молекулярному (О: О 2) становится равным 10. При взаимодействии этих форм кислорода в атмосфере (на высоте 20- 30 км) возникает озоновый пояс (озоновый экран). Озон (О 3) необходим живым организмам, задерживая губительную для них большую часть ультрафиолетовой радиации Солнца.

На ранних этапах развития Земли свободный кислород возникал в очень малых количествах в результате фотодиссоциации молекул углекислого газа и воды в верхних слоях атмосферы. Однако эти малые количества быстро расходовались на окисление других газов. С появлением в океане автотрофных фотосинтезирующих организмов положение существенно изменилось. Количество свободного кислорода в атмосфере стало прогрессивно возрастать, активно окисляя многие компоненты биосферы. Так, первые порции свободного кислорода способствовали прежде всего переходу закисных форм железа в окисные, а сульфидов в сульфаты.

В конце концов количество свободного кислорода в атмосфере Земли достигло определенной массы и оказалось сбалансированным таким образом, что количество производимого стало равно количеству поглощаемого. В атмосфере установилось относительное постоянство содержания свободного кислорода.

Геохимический круговорот кислорода (В.А. Вронский, Г.В. Войткевич)

Углекислый газ , идет на образование живого вещества, а вместе с водяным паром создает так называемый «оранжерейный (парниковый) эффект».

Углерод (углекислота) – его большая часть в атмосфере находится в виде СО 2 и значительно меньшая в форме СН 4 . Значение геохимической истории углерода в биосфере исключительно велико, поскольку он входит в состав всех живых организмов. В пределах живых организмов преобладают восстановленные формы нахождения углерода, а в окружающей среде биосферы – окисленные. Таким образом, устанавливается химический обмен жизненного цикла: СО 2 ↔ живое вещество.

Источником первичной углекислоты в биосфере является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма. Миграция СО 2 в биосфере протекает двумя способами.

Первый способ выражается в поглощении СО 2 в процессе фотосинтеза с образованием органических веществ и в последующем захоронении в благоприятных восстановительных условиях в литосфере в виде торфа, угля, нефти, горючих сланцев. По второму способу миграция углерода приводит к созданию карбонатной системы в гидросфере, где СО 2 переходит в Н 2 СО 3 , НСО 3 -1 , СО 3 -2 . Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (С орг) к углероду карбонатному (С карб) в истории биосферы составляло 1:4.

Наряду с глобальным круговоротом углерода существует еще ряд его малых круговоротов. Так, на суше зеленые растения поглощают СО 2 для процесса фотосинтеза в дневное время, а в ночное – выделяют его в атмосферу. С гибелью живых организмов на земной поверхности происходит окисление органических веществ (с участием микроорганизмов) с выделением СО 2 в атмосферу. В последние десятилетия особое место в круговороте углерода занимает массовое сжигание ископаемого топлива и возрастание его содержания в современной атмосфере.

Круговорот углерода в географической оболочке (по Ф. Рамаду, 1981)

Аргон – третий по распространению атмосферный газ, что резко отличает его от крайне скудно распространенных других инертных газов. Однако аргон в своей геологической истории разделяет судьбу этих газов, для которых характерны две особенности:

  1. необратимость их накопления в атмосфере;
  2. тесная связь с радиоактивным распадом определенных неустойчивых изотопов.

Инертные газы находятся вне круговорота большинства циклических элементов в биосфере Земли.

Все инертные газы можно подразделить на первичные и радиогенные. К первичным относятся те, которые были захвачены Землей в период ее образования. Они распространены крайне редко. Первичная часть аргона представлена преимущественно изотопами 36 Аr и 38 Аr, в то время как атмосферный аргон состоит полностью из изотопа 40 Аr (99,6%), который, несомненно, является радиогенным. В калийсодержащих породах происходило и происходит накопление радиогенного аргона за счет распада калия-40 путем электронного захвата: 40 К + е → 40 Аr.

Поэтому содержание аргона в горных породах определяется их возрастом и количеством калия. В такой мере концентрация гелия в породах служит функцией их возраста и содержания тория и урана. Аргон и гелий выделяются в атмосферу из земных недр во время вулканических извержений, по трещинам в земной коре в виде газовых струй, а также при выветривании горных пород. Согласно расчетам, выполненным П. Даймоном и Дж. Калпом, гелий и аргон в современную эпоху накапливаются в земной коре и в сравнительно малых количествах поступают в атмосферу. Скорость поступления этих радиогенных газов настолько мала, что не могла в течение геологической истории Земли обеспечить наблюдаемое содержание их в современной атмосфере. Поэтому остается предположить, что большая часть аргона атмосферы поступила из недр Земли на самых ранних этапах ее развития и значительно меньшая добавилась впоследствии в процессе вулканизма и при выветривании калийсодержащих горных пород.

Таким образом, в течение геологического времени у гелия и аргона были разные процессы миграции. Гелия в атмосфере весьма мало (около 5*10 -4 %), причем «гелиевое дыхание» Земли было более облегченным, так как он, как самый легкий газ, улетучивался в космическое пространство. А «аргоновое дыхание» – тяжелым и аргон оставался в пределах нашей планеты. Большая часть первичных инертных газов, как неон и ксенон, была связана с первичным неоном, захваченным Землей в период ее образования, а также с выделением при дегазации мантии в атмосферу. Вся совокупность данных по геохимии благородных газов свидетельствует о том, что первичная атмосфера Земли возникла на самых ранних стадиях своего развития.

В атмосфере содержится и водяной пар и вода в жидком и твердом состоянии. Вода в атмосфере является важным аккумулятором тепла.

В нижних слоях атмосферы содержится большое количество минеральной и техногенной пыли и аэрозолей, продуктов горения, солей, спор и пыльцы растений и т.д.

До высоты 100- 120 км, вследствие полного перемешивания воздуха состав атмосферы однороден. Соотношение между азотом и кислородом постоянно. Выше преобладают инертные газы, водород и др. В нижних слоях атмосферы находится водяной пар. С удалением от земли содержание его падает. Выше соотношение газов изменяется, например на высоте 200- 800 км, кислород преобладает над азотом в 10-100 раз.