The history of the creation of the ISS. International Space Station OKR creation of modules for the International Space Station

April 12 is Cosmonautics Day. And of course, it would be wrong to bypass this holiday. Moreover, this year the date will be special, 50 years since the first manned flight into space. It was on April 12, 1961 that Yuri Gagarin accomplished his historic feat.

Well, a man in space cannot do without grandiose superstructures. That is what the International space station(Eng. International Space Station).

The dimensions of the ISS are small; length - 51 meters, width together with trusses - 109 meters, height - 20 meters, weight - 417.3 tons. But I think everyone understands that the uniqueness of this superstructure is not in its size, but in the technologies used to operate the station in open space. The height of the ISS orbit is 337-351 km above the earth. Orbital speed - 27700 km / h. This allows the station to make a complete revolution around our planet in 92 minutes. That is, every day the astronauts who are on the ISS meet 16 sunrises and sunsets, 16 times night follows day. Now the ISS crew consists of 6 people, and in general for the entire period of operation the station received 297 visitors (196 different people). The start of operation of the International Space Station is November 20, 1998. And at the moment (04/09/2011) the station has been in orbit for 4523 days. During this time, it has evolved quite a lot. I suggest you verify this by looking at the photo.

ISS, 1999.

ISS, 2000.

ISS, 2002.

ISS, 2005.

ISS, 2006.

ISS, 2009.

ISS, March 2011.

Below I will give a diagram of the station, from which you can find out the names of the modules and also see the docking points of the ISS with other spacecraft.

The ISS is an international project. 23 states participate in it: Austria, Belgium, Brazil, Great Britain, Germany, Greece, Denmark, Ireland, Spain, Italy, Canada, Luxembourg(!!!), Netherlands, Norway, Portugal, Russia, USA, Finland, France, Czech Republic , Switzerland, Sweden, Japan. After all, to financially overpower the construction and maintenance of the functionality of the International Space Station alone is beyond the power of any state. It is not possible to calculate the exact or even approximate costs for the construction and operation of the ISS. The official figure has already exceeded 100 billion US dollars, and if you add all the side costs here, you get about 150 billion US dollars. This is already making the International Space Station the most expensive project throughout the history of mankind. And based on the latest agreements between Russia, the United States and Japan (Europe, Brazil and Canada are still in thought) that the life of the ISS has been extended until at least 2020 (and possibly a further extension), the total cost of maintaining the station will increase even more.

But I propose to digress from the numbers. After all, in addition to scientific value, the ISS has other advantages. Namely, the opportunity to appreciate the pristine beauty of our planet from the height of the orbit. And it is not necessary for this to go into outer space.

Because there is one at the station viewpoint, glazed module "Dome".

In 1984, US President Ronald Reagan announced the start of work on the creation of an American orbital station.

In 1988, the planned station was named "Freedom" ("Freedom"). At that time it was a joint project of the USA, ESA, Canada and Japan. A large-sized controlled station was planned, the modules of which would be delivered one by one into orbit by Shuttle spacecraft. But by the beginning of the 1990s, it became clear that the cost of developing the project was too high, and only international cooperation would make it possible to create such a station. The USSR, which already had experience in creating and launching the Salyut orbital stations, as well as the Mir station, planned the creation of the Mir-2 station in the early 1990s, but due to economic difficulties, the project was suspended.

On June 17, 1992, Russia and the United States entered into an agreement on cooperation in space exploration. In accordance with it, the Russian Space Agency and NASA have developed a joint Mir-Shuttle program. This program provided for the flights of the American reusable Space Shuttle to the Russian space station Mir, the inclusion of Russian cosmonauts in the crews of American shuttles and American astronauts in the crews of the Soyuz spacecraft and the Mir station.

During the implementation of the Mir-Shuttle program, the idea of ​​combining national programs for the creation of orbital stations was born.

March 1993 CEO RSA Yuri Koptev and General Designer of NPO Energia Yuri Semyonov proposed to the head of NASA, Daniel Goldin, to create the International Space Station.

In 1993, in the United States, many politicians were against the construction of a space station. In June 1993, the US Congress discussed a proposal to abandon the creation of the International Space Station. This proposal was not accepted by a margin of only one vote: 215 votes for refusal, 216 votes for the construction of the station.

On September 2, 1993, US Vice President Al Gore and Chairman of the Russian Council of Ministers Viktor Chernomyrdin announced a new project for a "truly international space station." From that moment on, the official name of the station became the International Space Station, although the unofficial name, the Alpha space station, was also used in parallel.

Stages of creating the ISS:

> 10 facts you didn't know about the ISS

Most Interesting Facts about the ISS(International Space Station) with a photo: the life of astronauts, you can see the ISS from Earth, crew members, gravity, batteries.

The International Space Station (ISS) is one of the greatest achievements of all mankind in terms of the state of the art in history. The space agencies of the USA, Europe, Russia, Canada and Japan united in the name of science and education. It is a symbol of technological excellence and shows how much we can achieve when we work together. Listed below are 10 facts you may not have heard about the ISS.

1. The ISS celebrated its 10th anniversary of continuous human operation on November 2, 2010. Starting from the first expedition (October 31, 2000) and docking (November 2), 196 people from eight countries visited the station.

2. The ISS can be seen from Earth without the use of technology, and it is the largest artificial satellite ever revolving around our planet.

3. From the first Zarya module, launched at 1:40 am ET on November 20, 1998, the ISS completed 68,519 Earth orbits. Her odometer reads 1.7 billion miles (2.7 billion km).

4. As of November 2, 103 launches were made to the cosmodrome: 67 Russian vehicles, 34 shuttles, one European and one Japanese vessel. 150 spacewalks were made to assemble the station and keep it running, which took over 944 hours.

5. The ISS is operated by a crew of 6 astronauts and cosmonauts. At the same time, the program of the station ensures the continuous presence of man in space since the launch of the first expedition on October 31, 2000, which is approximately 10 years and 105 days. Thus, the program has kept the current record, beating the previous mark of 3664 days set aboard the Mir.

6. The ISS serves as a research laboratory equipped with microgravity conditions, in which the crew conducts experiments in the field of biology, medicine, physics, chemistry and physiology, as well as astronomical and meteorological observations.

7. The station is equipped with huge solar panels, the size of which covers the territory of the US football field, including the end zone, and weighs 827,794 pounds (275,481 kg). The complex has a habitable room (like a five bedroom house) equipped with two bathrooms and a gym.

8. 3 million lines of code software on Earth, 1.8 million lines of flight code are supported.

9. A 55-foot robotic arm is capable of lifting 220,000 feet of weight. For comparison, this is how much an orbital shuttle weighs.

10. Acres of solar panels provide 75-90 kilowatts of power for the ISS.

The International Space Station, ISS (eng. International Space Station, ISS) is a manned multi-purpose space research complex.

The following are involved in the creation of the ISS: Russia (Federal Space Agency, Roskosmos); United States (US National Aerospace Agency, NASA); Japan (Japan Aerospace Exploration Agency, JAXA), 18 European countries (European Space Agency, ESA); Canada (Canadian Space Agency, CSA), Brazil (Brazilian Space Agency, AEB).

Start of construction - 1998.

The first module is "Dawn".

Completion of construction (presumably) - 2012.

The end date of the ISS is (presumably) 2020.

Orbit height - 350-460 kilometers from the Earth.

Orbital inclination - 51.6 degrees.

The ISS makes 16 revolutions per day.

The weight of the station (at the time of completion of construction) is 400 tons (for 2009 - 300 tons).

Internal space (at the time of completion of construction) - 1.2 thousand cubic meters.

Length (along main axis, along which the main modules lined up) - 44.5 meters.

Height - almost 27.5 meters.

Width (on solar panels) - more than 73 meters.

The first space tourists visited the ISS (sent by Roscosmos together with Space Adventures).

In 2007, the flight of the first Malaysian cosmonaut, Sheikh Muszaphar Shukor, was organized.

The cost of building the ISS by 2009 amounted to $100 billion.

Flight control:

the Russian segment is carried out from TsUP-M (TsUP-Moscow, the city of Korolev, Russia);

the American segment - from MCC-X (MCC-Houston, the city of Houston, USA).

The work of the laboratory modules included in the ISS is controlled by:

European "Columbus" - Control Center of the European Space Agency (Oberpfaffenhofen, Germany);

Japanese "Kibo" - MCC of the Japan Aerospace Exploration Agency (Tsukuba, Japan).

The flight of the European automatic cargo spacecraft ATV Jules Verne, intended for supplying the ISS, was controlled jointly with MCC-M and MCC-X by the Center of the European Space Agency (Toulouse, France).

Technical coordination of work on the Russian Segment of the ISS and its integration with the American Segment is carried out by the Council of Chief Designers under the leadership of the President, General Designer of RSC Energia named after V.I. S.P. Korolev, academician of the Russian Academy of Sciences Yu.P. Semenov.
The Interstate Commission for Flight Support and Operation of Manned Orbital Systems is in charge of preparing and conducting the launch of elements of the ISS Russian Segment.


According to the existing international agreement, each project participant owns its segments on the ISS.

The leading organization for the creation of the Russian segment and its integration with the American segment is RSC Energia im. S.P. Queen, and in the American segment - the company "Boeing" ("Boeing").

About 200 organizations take part in the manufacture of elements of the Russian segment, including: Russian Academy sciences; plant of experimental engineering RSC "Energia" them. S.P. Queen; rocket and space plant GKNPTs them. M.V. Khrunichev; GNP RCC "TsSKB-Progress"; Design Bureau of General Engineering; RNII of space instrumentation; Research Institute of Precision Instruments; RGNI TsPK im. Yu.A. Gagarin.

Russian segment: Zvezda service module; functional cargo block "Zarya"; docking compartment "Pirce".

American segment: node module "Unity" ("Unity"); gateway module "Quest" ("Quest"); laboratory module "Destiny" ("Destiny").

Canada has created a manipulator for the ISS on the LAB module - a 17.6-meter robot arm "Canadarm" ("Canadarm").

Italy supplies the ISS with the so-called Multi-Purpose Logistics Modules (MPLM). By 2009, three of them were made: "Leonardo", "Raffaello", "Donatello" ("Leonardo", "Raffaello", "Donatello"). These are large cylinders (6.4 x 4.6 meters) with a docking station. The empty logistics module weighs 4.5 tons and can be loaded with up to 10 tons of experimental equipment and consumables.

The delivery of people to the station is provided by Russian Soyuz and American shuttles (reusable shuttles); cargo is delivered by Russian "Progress" and American shuttles.

Japan created its first scientific orbital laboratory, which became the largest module of the ISS - "Kibo" (translated from Japanese as "Hope", the international abbreviation is JEM, Japanese Experiment Module).

By order of the European Space Agency, a consortium of European aerospace firms made the Columbus research module. It is intended for conducting physical, material science, biomedical and other experiments in the absence of gravity. By order of ESA, the Harmony module was made, which connects the Kibo and Columbus modules, as well as provides their power supply and data exchange.

Additional modules and devices were also made on the ISS: a module for the root segment and gyrodins at node-1 (Node 1); power module (section SB AS) on Z1; mobile service system; device for moving equipment and crew; device "B" of the equipment and crew movement system; trusses S0, S1, P1, P3/P4, P5, S3/S4, S5, S6.

All ISS laboratory modules have standardized racks for mounting units with experimental equipment. Over time, the ISS will acquire new nodes and modules: the Russian segment should be replenished with a scientific and energy platform, the Enterprise multipurpose research module (Enterprise) and the second functional cargo block (FGB-2). On the Node 3 module, the "Cupola" assembly built in Italy will be mounted. This is a dome with a number of very large windows through which the inhabitants of the station, like in a theater, will be able to observe the arrival of ships and control the work of their colleagues in outer space.

History of the creation of the ISS

Work on the International Space Station began in 1993.

Russia offered the US to join forces in the implementation of manned programs. By that time, Russia had a 25-year history of operation of the Salyut and Mir orbital stations, as well as invaluable experience in conducting long-term flights, research, and a developed space infrastructure. But by 1991, the country was in a difficult economic situation. At the same time, the creators of the Freedom orbital station (USA) also experienced financial difficulties.

On March 15, 1993, the general director of the Roscosmos agency, Yu.N. Koptev and General Designer of NPO Energia Yu.P. Semenov approached the head of NASA, Goldin, with a proposal to create the International Space Station.

September 2, 1993 Prime Minister Russian Federation Viktor Chernomyrdin and US Vice President Al Gore signed a "Joint Statement on Cooperation in Space", which provided for the creation of a joint station. On November 1, 1993, the "Detailed work plan for the International Space Station" was signed, and in June 1994, a contract between NASA and Roscosmos "On supplies and services for the Mir station and the International Space Station" was signed.

The initial stage of construction provides for the creation of a functionally complete plant structure from a limited number of modules. The first to be launched into orbit by the Proton-K launch vehicle was the Zarya functional cargo block (1998), made in Russia. The shuttle was delivered by the second ship and docked with the functional cargo block the American docking module Node-1 - "Unity" (December 1998). The third was the Russian service module Zvezda (2000), which provides station control, life support for the crew, station orientation and orbit correction. The fourth is the American laboratory module "Destiny" (2001).

The first prime crew of the ISS, who arrived at the station on November 2, 2000 on the Soyuz TM-31 spacecraft: William Shepherd (USA), ISS commander, flight engineer-2 of the Soyuz-TM-31 spacecraft; Sergey Krikalev (Russia), Soyuz-TM-31 flight engineer; Yuri Gidzenko (Russia), ISS pilot, Soyuz TM-31 spacecraft commander.

The duration of the flight of the ISS-1 crew was about four months. Its return to Earth was carried out by the American Space Shuttle, which delivered the crew of the second main expedition to the ISS. The Soyuz TM-31 spacecraft remained a part of the ISS for half a year and served as a rescue ship for the crew working on board.

In 2001, the P6 power module was installed on the Z1 root segment, the Destiny laboratory module, the Quest airlock, the Pirs docking compartment, two cargo telescopic booms, and a remote manipulator were delivered into orbit. In 2002, the station was replenished with three truss structures (S0, S1, P6), two of which are equipped with transport devices for moving the remote manipulator and astronauts while working in outer space.

The construction of the ISS was suspended due to the crash of the American spacecraft Columbia on February 1, 2003, and in 2006 construction work was resumed.

In 2001 and twice in 2007, computers failed in the Russian and American segments. In 2006, smoke occurred in the Russian segment of the station. In the fall of 2007, the station crew carried out repair work on the solar battery.

New sections of solar panels were delivered to the station. At the end of 2007, the ISS was replenished with two pressurized modules. In October, the Discovery shuttle STS-120 brought the Harmony Node-2 connection module into orbit, which became the main berth for the shuttles.

The European laboratory module Columbus was put into orbit on the Atlantis spacecraft STS-122 and, with the help of the manipulator of this spacecraft, was put into its regular place (February 2008). Then the Japanese Kibo module was introduced into the ISS (June 2008), its first element was delivered to the ISS by the Endeavor shuttle STS-123 (March 2008).

Prospects for the ISS

According to some pessimistic experts, the ISS is a waste of time and money. They believe that the station has not yet been built, but is already outdated.

However, in the implementation of a long-term program of space flights to the Moon or Mars, mankind cannot do without the ISS.

Since 2009, the permanent crew of the ISS will be increased to 9 people, and the number of experiments will increase. Russia has planned to conduct 331 experiments on the ISS in the coming years. The European Space Agency (ESA) and its partners have already built a new transport ship - the Automated Transfer Vehicle (ATV), which will be launched into the base orbit (300 kilometers high) by the Ariane-5 ES ATV rocket, from where the ATV will go into orbit due to its engines ISS (400 kilometers above the Earth). The payload of this automatic ship with a length of 10.3 meters and a diameter of 4.5 meters is 7.5 tons. This will include experimental equipment, food, air and water for the ISS crew. The first of the ATV series (September 2008) was named "Jules Verne". After docking with the ISS in automatic mode, the ATV can work in its composition for six months, after which the ship is loaded with garbage and in a controlled mode is flooded into pacific ocean. It is planned to launch ATVs once a year, and at least 7 of them will be built in total. The Japanese H-II "Transfer Vehicle" (HTV) automatic truck, launched into orbit by the Japanese H-IIB launch vehicle, which is still being developed, will join the ISS program. . The total weight of the HTV will be 16.5 tons, of which 6 tons is the payload for the station. It will be able to stay docked to the ISS for up to one month.

Obsolete shuttles will be decommissioned in 2010, and the new generation will appear no earlier than 2014-2015.
By 2010, the Russian manned Soyuz will be modernized: first of all, they will replace the electronic control and communication systems, which will increase the ship's payload by reducing the weight of electronic equipment. The updated "Union" will be able to be part of the station for almost a year. The Russian side will build the Clipper spacecraft (according to the plan, the first test manned flight into orbit is in 2014, commissioning is in 2016). This six-seater reusable winged shuttle is conceived in two versions: with an aggregate-household compartment (ABO) or an engine compartment (DO). The Clipper, which has risen into space to a relatively low orbit, will be followed by the interorbital tug Parom. "Ferry" - new development, designed to replace the cargo "Progress" over time. This tug should pull from the low reference orbit to the ISS orbit the so-called "containers", cargo "barrels" with a minimum of equipment (4-13 tons of cargo), launched into space with the help of Soyuz or Proton. The "Parom" has two docking stations: one for the container, the second - for mooring to the ISS. After the container is put into orbit, the ferry, due to its propulsion system, descends to it, docks with it and lifts it to the ISS. And after unloading the container, "Parom" lowers it into a lower orbit, where it undocks and slows down on its own to burn up in the atmosphere. The tug will have to wait for a new container to deliver it to the ISS.

RSC Energia official website: http://www.energia.ru/rus/iss/iss.html

The official website of the Boeing Corporation (Boeing): http://www.boeing.com

Mission Control Center official website: http://www.mcc.rsa.ru

Official website of the US National Aerospace Agency (NASA): http://www.nasa.gov

Official website of the European Space Agency (ESA): http://www.esa.int/esaCP/index.html

Japan Aerospace Exploration Agency (JAXA) official website: http://www.jaxa.jp/index_e.html

Official website of the Canadian Space Agency (CSA): http://www.space.gc.ca/index.html

Official website of the Brazilian Space Agency (AEB):

Exactly 20 years ago, on November 20, 1998, the construction of the International Space Station began, today it is the largest extraterrestrial laboratory, which employs astronauts from around the world.

A little-known fact: the history of the station goes back to the revolutionary events of the fall of 1993. The implementation of the "truly international space station" project was announced by the US Vice President and the Chairman of the Russian Council of Ministers on September 2 of that year.

And on October 4, when tanks were shelling the White House, a meeting of representatives of the Russian Space Agency was held in Moscow,

“We found a significant decrease in gray matter in the temporal region of the cortex, the maximum decrease in volume was 3.3%. As for the white matter of the brain, it is also characterized by a decrease in volume, - told Gazeta.Ru the head of the department of sensorimotor physiology of the Institute of Biomedical Problems, Ph.D. Elena Tomilovskaya. “After six months, gray matter levels return to about pre-flight levels.”

In the course of another Russian experiment "Test" at the height of the ISS, bacteria were found that live in the Barents Sea and the island of Madagascar. DNA of plant genomes, archaebacteria and fungi has also been found.

After the US abandoned the Space Shuttle program, Russian Soyuz spacecraft remained the only means of delivering people to the ISS.

The situation should change at the end of 2019, when the US plans to start flying its own manned spacecraft.

Today, cargo and products are delivered to the ISS by the American Cygnus and Dragon spacecraft, the Japanese HTV and the Russian Progress.

Practice has shown that the operation of the ISS is highly dependent on the rhythm of launches from the Earth and their failure-free operation. So, the disaster of the American shuttle Columbia

in 2003, forced to interrupt shuttle flights, which led to a reduction in the station's crew to two people.

And the recent accident of the Soyuz-FG manned rocket temporarily called into question the possibility of supplying the station with Soyuz rockets. However, the reasons were sorted out, and the next crew will go to the ISS on December 3.

The main question is related to the fate of the ISS after 2024, until which the current agreements of the participating countries are valid. “The technical condition of the ISS allows it to be operated until 2028-2030,” said a representative of the Energia Rocket and Space Corporation.

“Discussions are underway to extend the operation of the station until 2028. I think she can definitely serve until 2028, and then tests will show, ”said Sergey Krikalev, director of manned space programs at the state corporation Roscosmos. Meanwhile, there are calls in the United States to refuse to participate in the project after 2024 and even to hand over the American part of the ISS to private traders.