Доказательство теоремы пифагора готовые презентации. Тема нашего урока «Различные способы доказательства теоремы Пифагора». Другое доказательство методом вычитания

Слайд 1

Теорема Пифагора

Пребудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век.

Слайд 2

Формулировка теоремы Доказательства теоремы Значение теоремы Пифагора

Слайд 3

Формулировка теоремы

« Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах» « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».

Во времена Пифагора теорема звучала так:

Слайд 4

Современная формулировка

« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».

Слайд 5

Доказательства теоремы

Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).

Слайд 6

Самое простое доказательство

Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c.

Слайд 7

В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c.

В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c.

Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c.

Слайд 8

Доказательство Евклида

Дано: ABC-прямоугольный треугольник Доказать: SABDE=SACFG+SBCHI

Слайд 9

Доказательство:

Пусть ABDE-квадрат, построенный на гипотенузе прямоугольного треугольника ABC, а ACFG и BCHI-квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q; соединим точки C и E, B и G.

Слайд 10

Очевидно, что углы CAE=GAB(=A+90°); отсюда следует, что треугольники ACE и AGB(закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA; они имеют общее основание AE и высоту AP, опущенную на это основание, следовательно SPQEA=2SACE Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, SFCAG=2SGAB

Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.

Слайд 11

Алгебраическое доказательство

Дано: ABC-прямоугольный треугольник Доказать: AB2=AC2+BC2

Доказательство: 1) Проведем высоту CD из вершины прямого угла С. 2) По определению косинуса угла соsА=AD/AC=AC/AB, отсюда следует AB*AD=AC2. 3) Аналогично соsВ=BD/BC=BC/AB, значит AB*BD=BC2. 4) Сложив полученные равенства почленно, получим: AC2+BC2=АВ*(AD + DB) AB2=AC2+BC2. Что и требовалось доказать.

Слайд 12

Геометрическое доказательство

Дано: ABC-прямоугольный треугольник Доказать: BC2=AB2+AC2

Доказательство: 1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC. Затем опустим перпендикуляр ED к отрезку AD, равный отрезку AC, соединим точки B и E. 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:

SABED=2*AB*AC/2+BC2/2 3) Фигура ABED является трапецией, значит, её площадь равна: SABED= (DE+AB)*AD/2. 4) Если приравнять левые части найденных выражений, то получим: AB*AC+BC2/2=(DE+AB)(CD+AC)/2 AB*AC+BC2/2= (AC+AB)2/2 AB*AC+BC2/2= AC2/2+AB2/2+AB*AC BC2=AB2+AC2. Это доказательство было опубликовано в 1882 году Гэрфилдом.

Слайд 13

Значение теоремы Пифагора

Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.

Слайд 14

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство «убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи, вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.

Теорема Пифагора. История возникновения и различные способы доказательства.


  • Пифагор Самосский (др.-греч. Πυθαγόρας ὁ Σάμιος ; 570 - 490 гг. до н. э.) - древнегреческий философ, математик и мистик, создатель религиозно-философской школы пифагорейцев.

  • Родители – Мнесарх и Партенида с Самоса
  • В 18-летнем возрасте отправился в путешествие в Египет, Вавилон
  • Вернулся на родину в 56 лет
  • В греческой колонии Кротоне в Южной Италии основал свою школу
  • Был женат на своей ученице Феано, имел сына и дочь.

Пифогорейская школа.

Условия приёма в школу Пифагора:

  • отказаться от личной собственности в пользу союза
  • не проливать крови
  • не употреблять мясной пищи
  • беречь тайну учения своего учителя
  • не обучать других за вознаграждение

  • Умел разговаривать с птицами и животными
  • Повелевал духами и делал предсказания
  • Способен раздваиваться
  • Исцелял людей
  • Перевоплощённый бог Аполлон
  • Имел золотое бедро

  • Великая наука жить счастливо состоит в том, чтобы жить только в настоящем.
  • Дружба есть равенство.
  • Жизнь подобна игрищам: иные приходят на них состязаться, иные торговать, а самые счастливые - смотреть.
  • Из двух человек одинаковой силы сильнее тот, кто прав.

Музыка и Пифагор

  • Пифагор и его последователи рассчитали т.н. пифагоров строй - математическое выражение интервалов между звуками гаммы (т.н. «лидийской» гаммы).

  • Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

  • В древнекитайской книге Чжоу би суань цзин говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

  • Мориц Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам ещё около 2300 г. до н. э. , во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора, гарпедонапты, или «натягиватели верёвок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

  • Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммурапи, то есть к 2000 году до н. э. , приводится приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника . Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях.
  • Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал вывод о большой вероятности того, что теорема о квадрате гипотенузы была известна в Вавилоне уже около XVIII века до н. э.

  • Согласно комментарию Прокла к Евклиду, Пифагор использовал алгебраические методы, чтобы находитьпифагоровы тройки. Однако Прокл писал, что не существует явного упоминания, относящегося к периоду продолжительностью 5 веков после смерти Пифагора, что Пифагор был автором теоремы.
  • Однако, когда авторы, такие как Плутарх иЦицерон, пишут о теореме Пифагора, они пишут так, как будто авторство Пифагора было широко известным и несомненным.«Принадлежит ли эта формула лично перу Пифагора…, но мы можем уверенно считать, что она принадлежит древнейшему периоду пифагорейской математики».

  • По преданию, Пифагор отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков.Приблизительно в 400 г. до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Приблизительно в 300 г. до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора.

Формулировка теоремы

Во времена Пифагора теорема звучала так:

  • « Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах»
  • « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».

Формулировка теоремы

  • «

Формулировка теоремы

  • В Geometria Culmonensis (около 1400 г.) в переводе теорема читается так: "Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу".
  • В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: "В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол".

Формулировка теоремы

  • « У Евклида эта теорема гласит (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол".»
  • Латинский перевод арабского текста Аннаирици (около 900 г. до н. э.) в переводе на русский гласит:"Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол".

Современная формулировка

« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».


Доказательства теоремы

Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).


Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c .


В одном случае (слева) квадрат разбит на квадрат со стороной b a и c .

В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c .

Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c .


Дано:

ABC -прямоугольный треугольник

Доказать:

S ABDE =S ACFG +S BCHI


Доказательство:

Пусть ABDE -квадрат, построенный на гипотенузе прямоугольного треугольника ABC , а ACFG и BCHI -квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q ; соединим точки C и E , B и G .


Очевидно, что углы CAE=GAB(=A+90°) ; отсюда следует, что треугольники ACE и AGB (закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA ; они имеют общее основание AE и высоту AP , опущенную на это основание, следовательно

S PQEA = 2S ACE

Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, S FCAG =2S GAB

Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.


Дано: ABC -прямоугольный треугольник

Доказать: AB 2 =AC 2 +BC 2

Доказательство:

1) Проведем высоту CD из вершины прямого угла С . 2) По определению косинуса угла соsА=AD/AC=AC/AB , отсюда следует

AB*AD=AC 2 .

3) Аналогично соsВ=BD/BC=BC/AB , значит

AB*BD=BC 2 .

4) Сложив полученные равенства почленно, получим:

AC 2 +BC 2 = АВ *(AD + DB)

AB 2 =AC 2 +BC 2 . Что и требовалось доказать.


Дано: ABC -прямоугольный треугольник

Доказать: BC 2 =AB 2 +AC 2

Доказательство:

1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC . Затем опустим перпендикуляр ED к отрезку AD , равный отрезку AC , соединим точки B и E . 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:

S ABED =2*AB*AC/2+BC 2 /2

3) Фигура ABED является трапецией, значит, её площадь равна:

S ABED = (DE+AB)*AD/2.

4) Если приравнять левые части найденных выражений, то получим:

AB*AC+BC 2 /2=(DE+AB)(CD+AC)/2

AB*AC+BC 2 /2= (AC+AB) 2 /2

AB*AC+BC 2 /2= AC 2 /2+AB 2 /2+AB*AC

BC 2 =AB 2 +AC 2 .


  • Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC .

Введя обозначения

получаем

что эквивалентно


сложив получаем


Значение теоремы Пифагора

Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.



«Доказательства теоремы Пифагора» Работу выполнила ученица группы 8-1,2 Кузакова Екатерина Содержание: Вступление Биография Пифагора Теорема Пифагора Доказательства теоремы Пифагоровы «тройки» Список использованной литературы История теоремы. Древний Китай Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары. Древний Египет Кантор (крупнейший немецкий историк математики) считает, что равенство 3² + 4² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея) По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Древний Вавилон Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Древняя Индия Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э. Биография Пифагора Великий ученый Пифагор родился около 570 г. до н.э. на острове Самосе. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Имя же матери Пифагора неизвестно. По многим античным свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. Вскоре, неугомонному воображению юного Пифагора стало тесно на маленьком Самосе, и он отправляется в Милет, где встречается с другим ученым - Фалесом. Затем отправляется в путешествие и попадает в плен к вавилонскому царю Киру. В 530 г. до н.э. Кир двинулся в поход против племен в Средней Азии. И, пользуясь переполохом в городе, Пифагор сбежал на родину. А на Самосе в то время царствовал тиран Поликрат. После нескольких месяцев притязаний со стороны Поликрата, Пифагор переселяется в Кротон. В Кротоне Пифагор учредил нечто вроде религиозно-этического братства или тайного монашеского ордена ("пифагорейцы"), члены которого обязывались вести так называемый пифагорейский образ жизни. ...Прошло 20 лет. Слава о братстве разнеслась по всему миру. Однажды к Пифагору приходит Килон, человек богатый, но злой, желая спьяну вступить в братство. Получив отказ, Килон начинает борьбу с Пифагором, воспользовавшись поджогом его дома. При пожаре пифагорейцы спасли жизнь своему учителю ценой своей, после чего Пифагор затосковал и вскоре покончил жизнь самоубийством. Теорема Пифагора В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Другие формулировки теоремы. У Евклида эта теорема гласит (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол". В Geometria Culmonensis (около 1400 г.) в переводе теорема читается так: "Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу". Доказательства теоремы Пифагора Простейшее доказательство. Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для треугольника ABC: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах -по два. Доказательства методом разложения. Доказательство Эпштейна Начнем с доказательства Эпштейна; его преимуществом является то, что здесь в качестве составных частей разложения фигурируют исключительно треугольники. Чтобы разобраться в чертеже, заметим, что прямая CD проведена перпендикулярно прямой EF. Доказательство. 1. 2. 3. 4. Проведем прямую EF, на которой лежат диагонали двух квадратов, построенных на катетах треугольника и проведем прямую CD перпендикулярно EF через вершину прямого угла треугольника. Из точек А и В Продлим стороны квадрата, построенного на гипотенузе треугольника, до пересечения с EF. Соединим полученные на прямой EF точки с противолежащими вершинами квадрата и получим попарно равные треугольники. Заметим, прямая CD делит больший квадрат на две равные прямоугольные трапеции, которые можно разбить на треугольники, составляющие квадраты на катетах.И получим квадрат со стороной, равной гипотенузе треугольника. Теорема доказана. Доказательство Нильсена. 1. Продлим сторону АВ квадрата, построенного на гипотенузе треугольника. 2. Построим прямую EF, параллельную ВС. 3. Построим прямую FH, араллельную АВ. 4. Построим прямую из точки D, параллельную СН. 5. Построим прямую из точки А, параллельную СG 6. Проведем отрезок MN, параллельный СН 7. Так как все фигуры, полученные в большем треугольнике равны фигурам в квадратах, построенных на катетах, значит площадь квадрата на гипотенузе равна сумме площадей квадратов на катетах. Теорема доказана. F E H С В M N G А D Доказательство Бетхера. 1. 2. 3. Проведем прямую, на которой лежат диагонали квадратов, построенных на катетах треугольника и опустим из вершин квадратов параллельные отрезки на эту прямую. Переставим большие и маленькие части квадратов, расположенные над осью. Разобьем полученную фигуру как указанно на рисунке и расположим их так, чтобы получился квадрат, сторона которого равна гипотенузе треугольника. Теорема доказана. Доказательство методом дополнения. От двух равных площадей нужно отнять равновеликие части так, чтобы в одном случае остались два квадрата, построенные на катетах, а в другом- квадрат, построенный на гипотенузе. На рис. к обычной пифагоровой фигуре приставлены сверху и снизу треугольники 2 и 3, равные исходному треугольнику 1. Прямая DG обязательно пройдет через C. Заметим теперь (далее мы это докажем), что шестиугольники DABGFE и CAJKHB равновелики. Если мы от первого из них отнимем треугольники 1 и 2, то останутся квадраты, построенные на катетах, а если от второго шестиугольника отнимем равные треугольники 1 и 3, то останется квадрат,построенный на гипотенузе. Отсюда вытекает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов, построенных на катетах. Остается доказать, что наши шестиугольники равновелики. Заметим, что прямая DG делит верхний шестиугольник на равновеликие части; то же можно сказать о прямой CK и нижнем шестиугольнике. Повернем четырехугольник DABG, составляющий половину шестиугольника DABGFE, вокруг точки А по часовой стрелке на угол 90; тогда он совпадет с четырехугольником CAJK, составляющим половину шестиугольника CAJKHB. Поэтому шестиугольники DABGFE и CAJKHB равновелики. Теорема доказана. Доказательство методом вычитания. Познакомимся с другим доказательством методом вычитания. Знакомый нам чертеж теоремы Пифагора заключим в прямоугольную рамку, направления сторон которой совпадают с направлениями катетов треугольника. Продолжим некоторые из отрезков фигуры так, как указано на рисунке, при этом прямоугольник распадается на несколько треугольников, прямоугольников и квадратов. Выбросим из прямоугольника сначала несколько частей так чтобы остался лишь квадрат, построенный на гипотенузе. Эти части следующие: 1. 2. 3. 4. треугольники 1, 2, 3, 4; прямоугольник 5; прямоугольник 6 и квадрат 8; прямоугольник 7 и квадрат 9; 1. 2. 3. 4. 1. 2. 3. 4. Затем выбросим из прямоугольника части так, чтобы остались только квадраты, построенные на катетах. Этими частями будут: прямоугольники 6 и 7; прямоугольник 5; прямоугольник 1(заштрихован); прямоугольник 2(заштрихован); Нам осталось лишь показать, что отнятые части равновелики. Это легко видеть в силу расположения фигур. Из рисунка ясно, что: прямоугольник 5 равновелик самому себе; четыре треугольника 1,2,3,4 равновелики двум прямоугольникам 6 и 7; прямоугольник 6 и квадрат 8, взятые вместе, равновелики прямоугольнику 1 (заштрихован);; прямоугольник 7 вместе с квадратом 9 равновелики прямоугольнику 2(заштрихован); Теорема доказана Пифагоровы «тройки» В школе Пифагора также были подробно изучены так называемые Пифагоровы тройки натуральных чисел. Это числа, у которых квадрат одного числа равен сумме квадратов двух других. То есть, для которых справедливо равенство a 2 + b 2 = c 2 (a,b,c - натуральные числа) Таковы, например, числа 3, 4, 5. Все тройки взаимно простых пифагоровых чисел можно получить по формулам: a= 2n+1 b=2n (n+1) c=2n 2 +2n , где n - натуральное числа Список используемой литературы. Сайты в Интернете: http://th-pif.narod.ru/dopoln.htm http://ega-math.narod.ru/Books/Pythagor.htm

Теорема Пифагора

и её применение.


«Геометрия владеет двумя сокровищами: одно из них – это теорема Пифагора ».

Иоганн Кеплер


Историческая тропинка

Полянка

Здоровья

Крепость Формул

Город Мастеров


Пифагор

(580 - 500 г. до н.э.)


Теорема Пифагора – теорема Невесты

У математиков арабского востока эта теорема получила название "теоремы невесты". Дело в том, что в некоторых списках "Начал" Евклида эта теорема называлась "теоремой нимфы" за сходство чертежа с пчелкой, бабочкой, что по-гречески называлось нимфой. Но словом этим греки называли еще некоторых богинь, а также вообще молодых женщин и невест. При переводе с греческого арабский переводчик, не обратив внимания на чертеж, перевел слово "нимфа" как "невеста", а не "бабочка". Так появилось ласковое название знаменитой теоремы - "теорема невесты".


Теорема Пифагора у Евклида:

В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол


Теорема Пифагора во времена Пифагора теорема была сформулирована так:

«Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах»


Латинский перевод:

Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол


Немецкий перевод:

Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу


Если дан нам треугольник, И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдем: Катеты в квадрат возводим, Сумму степеней находим - И таким простым путем, К результату мы придем.



Найдите: SP


Найдите: КN


Найдите: АD



Задача № 1

(индийского математика XII века Бхаскары)

"На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С теченьем реки его ствол составлял. Запомни теперь, что в этом месте река В четыре лишь фута была широка Верхушка склонилась у края реки. Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?"


Дано: АВС, ۦے С = 90 0 ,

ВС=3 фута, АС=4 фута.

Найти: ДС .

Решение:

ДС=ДВ+ВС, ВД = ВА.

По теореме Пифагора

АВ 2 =AC 2 +ВС 2 , АВ 2 = 9+16

АВ 2 =25, АВ=5.

ДС = 3 +5 = 8 (футов).

Ответ: 8 футов.


Задача № 2

Из одной точки на земле отправились в путь автомобиль и самолет. Автомобиль преодолел расстояние 8 км, когда самолет оказался на высоте 6 км. Какой путь пролетел самолёт в воздухе с момента взлёта?



Дано: АВС, ۦے С = 90 0 ,

ВС= 6 км, АС= 8 км.

Найти: АВ .

Решение:

По теореме Пифагора

АВ 2 =AC 2 +ВС 2 , АВ 2 = 36 + 64

АВ 2 =100, АВ=10 км.

Ответ: 10 км. .


Задача № 498 (а – в) учебник (стр. 133)

а) 10 2 = 6 2 + 8 2 в) 15 2 = 9 2 + 12 2

100 = 36 + 64 225 = 81 + 144

100 = 100 225 = 225

Ответ: да Ответ: да

б) 7 2 = 5 2 + 6 2

Ответ: нет


Полянка

Здоровья



«Штурмуем»

Крепость Формул


Проверь друга!

I вариант

20см 2

30см 2

II вариант

36см 2

64см 2


Ещё землемеры Древнего Египта для построения прямого угла использовали веревку, разделенную узлами

на 12 равных частей


25 и более баллов – оценка «5»

18 – 24 баллов – оценка «4»

12 -17 баллов – оценка «3»

Менее 12 баллов – оценка «2»


Спасибо


1. Вводная часть

2. Исторический экскурс

  • Рассказ о Пифагоре;
  • Из истории теоремы Пифагора

4. Доказательство теоремы

5. Теорема обратная теореме Пифагора

6. Задачи по готовым чертежам

7. Старинные задачи

8. Самопроверка


– одна из самых знаменитых положений геометрии. Хотя она и названа именем великого древнегреческого математика и философа, жившего более 25 веков тому назад, история ее началась задолго до самого Пифагора.


Исторический экскурс

  • Рассказ о Пифагоре

Говоря о Пифагоре, следует сразу отметить, что о его жизни известно немного. Мы знаем, что в 6 в. до н.э. в Др.Греции жил ученый по имени Пифагор, родом из Самоса. В молодости он много путешествовал по странам Востока, где изучал разные науки. Вернувшись на родину, Пифагор основал философскую школу, так называемый пифагорейский союз. Пифагорейцами были сделаны важные открытия в области арифметики и геометрии.


Исторический экскурс

  • Из истории теоремы Пифагора

Интересна история теоремы Пифагора. Она была известна задолго до Пифагора. Эта теорема встречалась за 1200 лет до него. Возможно еще тогда не знали доказательство, а отношения между гипотенузой и катетом устанавливали опытным путем. Пифагор нашел доказательство этого соотношениям. Сохранилось древнее поверие, что Пифагор в честь своего открытия принес жертву богам быка. Позже были найдены различные доказательства теоремы, в настоящее время их более 100.

Учащиеся средних веков считали доказательство этой теоремы трудным и прозвали его «ослиным мостом» или «бегством убогих»,т.к. слабые ученики бежали от геометрии.


Теорема Пифагора В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.


Доказательство теоремы

Рассмотрим прямоугольный треугольник с катетами a, b и гипотенузой c. (рис. 1).

Докажем что c 2 = a 2 + b 2 .

Достроим треугольник до квадрата со стороной a+b так, как показано на рис.2. Площадь S этого квадрата равна (a+b) 2 . С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ½ a*b,и квадрата со стороной c, поэтому S = 4* ½ a*b + с 2 = 2a*b + с 2 .

Таким образом (a+b) 2 = 2a*b + с 2 , откуда: с 2 = a 2 + b 2 . Теорема доказана.



Существует теорема, обратная теореме Пифагора

Если квадрат одной стороны треугольника

равен сумме квадратов двух других сторон,

то треугольник прямоугольный.


С помощью готовых чертежей вычислить, если возможно :

Сторону АС треугольника АВС

Сторону MN треугольника KMN

Сторону KP треугольника KPR

Диагональ BD квадрата BCDF


Рассмотрим несколько старинных задач на применение теоремы Пифагора

Задача 1 (из «Арифметики» Л.Ф.Магницкого)

Случися некоему человеку к стене лествицу прибрати, стены же тоя высота есть 117 стоп. И обрете лествицу долготою 125 стоп. И ведати хощет, колико стоп сея лествицы нижний конец от стены отстояти имать.


Решение задачи 1

Решение. Треугольник ABC – прямоугольный. Пусть BC = x стоп, тогда по теореме Пифагора AC 2 + BC 2 = AB 2 ,

117 2 + x 2 = 125 2 ;

x 2 = 125 2 – 117 2 ,

x 2 = (125-117)*(125+117),

x 2 = 8*242, x = 44.

Ответ: 44 стопы


Задача 2 (индийского математика XII в. Бхаскары)

На берегу реки рос тополь одинокий.

Вдруг ветра порыв его ствол надломал.

Бедный тополь упал. И угол прямой

С течением реки его ствол составлял.

Запомни теперь, что в том месте река

В четыре лишь фута была широка.

Верхушка склонилась у края реки,

Осталось три фута всего от ствола.

Прошу тебя, скоро теперь мне скажи:

У тополя как велика высота?


Решение задачи 2

Решение :

Пусть AB – высота тополя, тогда AB = AC + CD. Найдем CD. Треугольник ABC – прямоугольный. По теореме Пифагора CD 2 = AC 2 + AD 2 , CD 2 = 3 2 + 4 2 , откуда CD = 5 футов. Значит, AB = 3 + 5 = 8футов

Ответ : 8 футов


Задача 3 (из древнеиндийского трактата)

Над озером тихим,

С полфута размером, высился лотоса цвет.

Он рос одиноко. И ветер порывом

Отнес его в сторону.

Нет боле цветка над водой.

Нашел же рыбак его ранней весной

В двух футах от места, где рос.

Итак, предложу я вопрос:

Как озера вода здесь глубока?


Решение задачи 3

Решение:

Треугольник ABC – прямоугольный, AB = AC + ½

Тогда по теореме Пифагора AB 2 = AC 2 + CB 2 , (AC + ½) 2 = AC 2 + 2 2 , AC = 3¾ фута

Ответ: 3¾ фута


http://th-pif.narod.ru

На этом сайте вы сможете найти сведения об истории открытия и доказательства теоремы Пифагора, а так же о самом Пифагоре. Здесь приведены около 30 различных доказательств этой теоремы от древнейндийского математика Басхары до векторного доказательства. Вы сможете узнать, как использовали свойства и теорему прямоугольного треугольника древние египтяне, архитекторы средневековья и как она используется в наше время.