Космические корабли будущего на черном. Космические корабли будущего: проекты, проблемы, перспективы. New Shepard — Секретный корабль от Amazon

В феврале Space X осуществила запуск тяжёлой ракеты-носителя Falcon Heavy. Главу компании, Илона Маска, принято считать гением и "визионером", но даже его фантазии по колонизации Марса меркнут по сравнению с проектами, работа над которыми уже вовсю идёт.

Шахтёры на метеорите

Делать деньги в космосе - относительно новая идея. Сложно рассчитывать на то, что большой бизнес будет заинтересован в сугубо научных изысканиях, поэтому будущее космической отрасли кроется именно в увеличении коммерческих проектов - ведь освоение просторов Америки также было продиктовано не столько тягой к знаниям, сколько жаждой наживы.

Добыча ресурсов на астероиде - наиболее смелая и амбициозная из всех возможных идей обогатиться за счёт внеземных ресурсов. Наиболее яркий пример зарождения новой отрасли - американские компании Deep Space Industries и Planetary Resources, на проекты которых правительство Люксембурга выделило 200 миллионов долларов.

По существующим проектам, добыча на астероидах будет проходить в несколько этапов: обнаружение потенциально "интересных" небесных тел, проведение дистанционного анализа/взятия проб, и, в случае, если астероид будет признан "стоящим", добыча на нём ископаемых.

Разработка ресурсов на метеорите - не просто фантазии: зонд компании Planetary Resources, Arkyd-6 в начале года был успешно на орбиту Земли. Он является своего рода модулем, который отработает технологию обнаружения потенциально годных для разработки небесных тел. Далее в компании планируют вывести на орбиту аппарат Arkyd-100 - полноценный спутник, полностью оборудованный для обнаружения метеоритов, после этого напрямую к небесному телу будут отправлены Arkyd-200 и Arkyd-300, целью которых станет разведка в непосредственной близости к небесному телу.

После этих предварительных приготовлений планируется отправка к небесному телу добывающих кораблей, работающих в автоматическом режиме. Первым опытом космического бурения, по прогнозам Planetary Resources, человечество сможет похвастаться уже к 2030 году.

В чём выгода от промышленной разработки астероидов? Во-первых, на них можно добывать воду и водосодержащие вещества - необходимое сырьё для производства ракетного топлива прямо в космосе.

А во-вторых, такие небесные тела могут содержать массу элементов, крайне редко встречающихся не Земле. К примеру, астероид 2011 UW158, пролетевший мимо нашей планеты в 2015 году, содержал в себе платины на $5 триллионов.

Лунные похороны

Человек не вечен, и его путь после жизни должен быть пересмотрен в космическую эру. Во всяком случае, в этом убеждены в компании Elysium Space , которая планирует предложить услугу отправки праха усопших на Луну.

Вместо того чтобы смотреть себе под ноги, вспоминая своих близких и друзей, мы можем поднять взгляд вверх к вечным чудесам ночного неба, зная, что дорогие нам люди всегда с нами, - говорится на сайте компании.

Для того чтобы воспользоваться необычной услугой, в компании разработали специальные мини-урны, куда помещается часть праха, который затем запускается в космос.

В Elysium Space предлагают два варианта "космических похорон": первый, ценой в $2500 под названием "Падающая звезда", предполагает вывод праха на орбиту Земли, где он проведёт порядка двух лет и будет доступен для отслеживания в реальном времени с помощью приложения смартфона. Второй - доставку праха на Луну, где он будет покоиться "всю вечность".

Дата запуска корабля Star II, который выведет мини-урны на орбиту, не уточняется, в то время как зонд Lunar I должен устремиться к спутнику Земли уже в 2019 году.

Дрон и подлодка на спутнике Сатурна

В отличие от рассмотренных выше проектов и компаний, американское аэрокосмическое агентство NASA сосредотачивается в большей степени на исследовательских миссиях, которые, как выяснилось, требуют всё большей фантазии и смелости. В число таких проектов входит отправка дрона и подводной лодки на спутник Сатурна Титан - небесного тела, на котором, как учёные, наиболее вероятно возникновение и развитие жизни.

Проект "Стрекоза" (Dragonfly) был разработан в Лаборатории прикладной физики Университета Джона Хопкинса и является одним из двух финалистов конкурса на лучший проект космических миссий по программе по исследованию Солнечной системы New Frontiers.

В отличие от стандартных "роверов", передвигающихся с помощью колёс, "Стрекоза" - летающий зонд, он передвигается в плотной атмосфере Титана, задействуя винты, которые поднимают аппарат над поверхностью спутника.

Ещё одной отличительной особенность проекта является то, что зонд будет работать на ядерной энергетической установке.

На поверхности Титана реки, озёра и целые океаны, состоящие из углеводородов. Исследование загадок спутника Сатурна немыслимо без погружения внутрь этой пучины.

Именно поэтому NASA планирует создать и снарядить "космическую подлодку". Работу над проектом ведут специалисты из Университета штата Вашингтон, воссоздавшие условия, с которыми предстоит столкнуться аппарату на Титане с целью исследовать возможное воздействие малоизученной среды спутника на аппарат.

В частности, учёным уже удалось выяснить, что "углеводородные водоёмы" замерзают при температуре –198 °C, а значит, шанс, что подлодка столкнётся с подобием айсберга, минимален - это существенно упрощает задачу по конструированию подлодки, запуск которой к Титану намечен на ближайшие 20 лет.

Первый межзвёздный перелёт

Поиск жизни или её признаков в пределах Солнечной системы - одна из первоочередных задач современной науки, но это не значит, что человечество навсегда отказывается от полётов к звёздам.

Инициатива Breakthrough Starshot, российским миллиардером Юрием Мильнером и знаменитым британским астрофизиком Стивеном Хокингом, подразумевает отправку наноспутников на лазерных парусах к альфе Центавра - ближайшей к Солнцу звёздной системе.

Альфа Центавра находится на расстоянии порядка 4,37 световых лет. Преодолеть огромные межзвёздные расстояния наноспутники, в отличие от больших кораблей, смогут за счёт своей сверхмалой массы с гораздо большей скоростью - около 20% от скорости света.

Для воплощения проекта в реальность Мильнер выделил $100 миллионов. Необходимые технологии ещё не существуют, но, по мнению учёных, у человечества есть все возможности достигнуть альфы Центавра до конца XXI века.

Космический лифт

Один из самых амбициозных проектов будущего, который радикально и навсегда изменит судьбу и подход человечества к видению себя, - космический лифт.

Впервые идея космического лифта была сформулирована российским учёным Константином Циолковским. Условно космический лифт представляет собой конструкцию, на которой трос удерживается одним концом на поверхности планеты, а другим - в неподвижной относительно Земли точке на орбите.

Центр масс такого лифта должен находиться на высоте около 36 тысяч километров. Трос лифта должен быть изготовлен из материала, обладающего чрезвычайно высоким отношением предела прочности к удельной плотности - наиболее подходящим для строительства космического лифта материалом являются углеродные нанотрубки, часто называемые материалом XXI века.

Тем не менее технология получения нанотрубок в промышленных количествах и их последующего сплетения в кабель лишь начинает разрабатываться.

Почему космический лифт оказался в списке амбициозных, но всё же более или менее близких в реализации проектов?

Компания Obayashi обещает создать космический лифт уже к 2050 году.

Человечество осваивает космическое пространство пилотируемыми кораблями уже более полувека. Увы, за это время оно, образно говоря, недалеко уплыло. Если сравнить Вселенную с океаном, мы всего лишь бродим у кромки прибоя по щиколотку в воде. Однажды, правда, решились поплавать немного поглубже (лунная программа "Аполлон"), и с тех пор живем воспоминаниями об этом событии как о высочайшем достижении.

До сих пор космические корабли в основном служат транспортом доставки на и обратно на Землю. Максимальная продолжительность автономного полета, достижимая многоразовым челноком "Спейс Шаттл", составляет всего лишь 30 дней, да и то теоретически. Но, быть может, космические корабли будущего станут гораздо совершеннее и универсальнее?

Уже лунные экспедиции "Аполлонов" наглядно показали, что требования к грядущим космолетам могут разительно отличаться от заданий для "космических такси". Лунная кабина "Аполлона" имела очень мало общего с обтекаемыми кораблями и не была рассчитана на полет в планетной атмосфере. Некоторое представление о том, как будут выглядеть космические корабли будущего, фото американских астронавтов дают более чем наглядно.

Самый серьезный фактор, который сдерживает эпизодическое исследование человеком Солнечной системы, не говоря уже об организации на планетах и их спутниках научных баз, - радиация. Проблемы возникают даже с лунными миссиями, длящимися от силы неделю. А полуторагодовой полет на Марс, который, казалось, вот-вот состоится, отодвигается все дальше и дальше. Исследования автоматами показали смертельно опасный для человека на всей трассе межпланетного перелета. Так что космические корабли будущего неизбежно обзаведутся серьезной противорадиационной защитой в сочетании со специальными медико-биологическими мерами для экипажа.

Понятно, что чем быстрее он доберется до места назначения, тем лучше. Но для быстрого полета нужны мощные двигатели. А для них, в свою очередь, высокоэффективное топливо, которое не занимало бы много места. Поэтому химические маршевые двигатели уже в ближайшем будущем уступят место ядерным. Если же ученым удастся укрощение антивещества, т. е. перевод массы в световое излучение, космические корабли будущего обретут В этом случае речь пойдет уже о достижении релятивистских скоростей и межзвездных экспедициях.

Еще одним серьезным препятствием на пути освоения человеком Вселенной станет длительное обеспечение его жизнедеятельности. Всего лишь за сутки человеческий организм потребляет немало кислорода, воды и пищи, выделяет твердые и жидкие отходы, выдыхает углекислый газ. Брать с собой на борт полный запас кислорода и продуктов бессмысленно из-за их огромного веса. Проблему решает бортовая замкнутая Однако до сих пор все эксперименты на эту тему не увенчались успехом. А без замкнутой СЖО немыслимы годами летящие сквозь пространство космические корабли будущего; картинки художников, конечно, поражают воображение, но не отражают реальное положение дел.

Итак, все проекты космолетов и звездолетов пока еще далеки от реального воплощения. И человечеству придется смириться с изучением Вселенной космонавтами под прикрытием и получением информации от автоматических зондов. Но это, конечно же, временно. Космонавтика не стоит на месте, и косвенные признаки показывают, что в этой сфере деятельности человечества зреет большой прорыв. Так что, возможно, космические корабли будущего будут построены и совершат первые полеты уже в XXI веке.

В этой статье будет затронута такая тема, как космические корабли будущего: фото, описание и технические характеристики. Прежде чем перейти непосредственно к теме, предлагаем читателю короткий экскурс в историю, который поможет оценить современное состояние космической отрасли.

Космос в период холодной войны был одной из арен, на которых велось противостояние между США и СССР. Главным стимулом развития космической отрасли в те годы было именно геополитическое противостояние сверхдержав. Огромные ресурсы были брошены на программы освоения космоса. Например, на реализацию проекта под названием "Аполлон", основная цель которого - высадка на поверхность Луны человека, правительство Соединенных Штатов потратило примерно 25 млрд долларов. Эта сумма для 1970-х годов была просто гигантской. Бюджету Советского Союза лунная программа, которой осуществиться так и не было суждено, обошлась в 2,5 млрд рублей. 16 млн рублей стоила разработка космического корабля "Буран". При этом ему было суждено совершить только один космический полет.

Программа "Спейс шаттл"

Его американскому аналогу повезло намного больше. "Спейс шаттл" совершил 135 запусков. Однако "шаттл" этот оказался не вечен. Последний его запуск состоялся 8 июля 2011 года. Американцы за время осуществления программы выпустили 6 "шаттлов". Один из них являлся прототипом, не осуществлявшим никогда космических полетов. 2 других и вовсе потерпели катастрофу.

Программу "Спейс шаттл" с экономической точки зрения вряд ли можно считать успешной. Гораздо более экономичными оказались корабли одноразового использования. К тому же вызвала сомнения безопасность полетов на "шаттлах". В результате двух катастроф, произошедших в период их эксплуатации, жертвами стали 14 астронавтов. Однако причина таких неоднозначных итогов путешествий заключается не в техническом несовершенстве кораблей, а в сложности самой концепции предназначенных для многоразового использования космических аппаратов.

Значение космических аппаратов "Союз" сегодня

В итоге "Союз", космические корабли одноразового использования из России, которые были разработаны еще в 1960-е годы, стали единственными аппаратами, осуществляющими сегодня пилотируемые полеты на МКС. Следует отметить, что это не означает их превосходства над "Спейс шаттлом". Они обладают рядом существенных недостатков. Например, грузоподъемность их ограничена. Также использование такого рода аппаратов приводит к тому, что накапливается орбитальный мусор, который остается после их эксплуатации. Очень скоро космические полеты на "Союзе" станут историей. На сегодняшний день нет реальных альтернатив. Все еще находятся в стадии разработки космические корабли будущего, фото которых представлены в этой статье. Заложенный в концепции многоразового использования кораблей огромный потенциал зачастую даже в наше время остается технически нереализуемым.

Заявление Барака Обамы

Барак Обама в июле 2011 года заявил о том, что главной целью астронавтов из США на ближайшие десятилетия является полет на Марс. Космическая программа "Созвездие" стала одной из программ, которые NASA осуществляет в рамках полета на Марс и освоения Луны. Для этих целей, конечно, нужны новые космические корабли будущего. Как же обстоит дело с их разработкой?

Космический корабль "Орион"

Основные надежды возлагаются на создание "Ориона" - нового космического корабля, а также ракет-носителей "Арес-5" и "Арес-1" и лунного модуля "Альтаир". В 2010 году правительство Соединенных Штатов решило свернуть программу "Созвездие", но, несмотря на это, NASA все-таки получило возможность дальнейшей разработки "Ориона". В ближайшем будущем планируется осуществить первый испытательный беспилотный полет. Предполагается, что аппарат во время этого полета удалится от Земли на 6 тыс. км. Это примерно в 15 раз больше, чем расстояние, на котором находится от нашей планеты МКС. Корабль после тестового полета возьмет курс на Землю. Новый аппарат в атмосферу может входить, развивая скорость 32 тыс. км/ч. "Орион" по данному показателю превосходит на 1,5 тыс. км/ч легендарный "Аполло". На 2021 год намечено осуществление первого пилотируемого запуска.

В роли ракет-носителей этого корабля, согласно планам NASA, будут выступать "Атлас-5" и "Дельта-4". Было решено отказаться от разработки "Ареса". Для освоения дальнего космоса, кроме того, американцы проектируют SLS - новую ракету-носитель.

Концепция "Ориона"

"Орион" является кораблем частично многоразового использования. Он находится концептуально ближе к "Союзу", чем к "Шаттлу". Большинство космических кораблей будущего являются частично многоразовыми. Данная концепция предполагает то, что жидкую капсулу корабля после посадки на Землю можно будет использовать повторно. Это позволит совместить экономичность эксплуатации "Аполло" и "Союза" с функциональной практичностью многоразовых кораблей. Это решение является переходным этапом. По всей видимости, в далекой перспективе станут многоразовыми все космические корабли будущего. Такова тенденция развития космической отрасли. Поэтому можно сказать, что советский "Буран" - прототип космического корабля будущего, как и американский "Спейс шаттл". Они сильно опередили свое время.

CST-100

Слова "предусмотрительность" и "практичность", похоже, характеризуют американцев как нельзя лучше. Правительство этой страны приняло решение не взваливать на плечи "Ориона" все космические амбиции. Сегодня по заказу NASA сразу несколько частных фирм разрабатывают свои космические корабли будущего, которые призваны заменить аппараты, используемые сегодня. Компания Boeing, например, разрабатывает CST-100 - частично многоразовый и пилотируемый корабль. Он предназначен для коротких путешествий на орбиту Земли. Основной задачей его будет доставка грузов и экипажа на МКС.

Планируемые запуски CST-100

До семи человек может составлять экипаж корабля. Во время разработки CST-100 было уделено особое внимание комфорту астронавтов. Было существенно увеличено жилое пространство его по сравнению с кораблями прошлого поколения. Вероятно, запуск CST-100 будет производиться с использованием ракет-носителей "Фалькон", "Дельта" или "Атлас". "Атлас-5" при этом является самым подходящим вариантом. С помощью воздушных подушек и парашюта будет осуществляться посадка корабля. Согласно планам фирмы Boeing, CST-100 в 2015 году ждет целая серия испытательных запусков. Беспилотными будут первые 2 полета. Основная задача их - вывести на орбиту аппарат и протестировать системы безопасности. Пилотируемая стыковка с МКС планируется во время третьего полета. CST-100 в случае успешных испытаний очень скоро придет на замену "Прогрессу" и "Союзу" - российским кораблям, монопольно осуществляющим сегодня пилотируемые полеты на МКС.

Разработка "Дракона"

Другим частным кораблем, призванным выполнять доставку экипажа и грузов на МКС, будет разработанный фирмой SpaceX аппарат. Это "Дракон" - моноблочный корабль, частично многоразовый. Планируется построить 3 модификации данного аппарата: автономную, грузовую и пилотируемую. Как и у CST-100, экипаж может составлять до семи человек. Корабль в грузовой модификации может брать на борт 4 человека и 2,5 тонны груза.

"Дракон" хотят в будущем использовать также для полета на Марс. Для этого создается специальная версия этого корабля под названием "Рэд драгон". Беспилотный полет этого аппарата на Красную планету состоится, согласно планам космического руководства США, в 2018 году.

Конструктивная особенность "Дракона" и первые полеты

Многоразовость является одной из особенностей "Дракона". Топливные баки и часть энергетических систем после полета будет спускаться вместе с жилой капсулой на Землю. Затем их можно использовать вновь для космических полетов. Данная конструктивная особенность выгодно отличает "Дракон" от большинства других перспективных разработок. "Дракон" и CST-100 в ближайшем будущем будут дополнять друг друга и служить в качестве "подстраховки". Если один из этих типов корабля не сможет по какой-то причине выполнить задачи, поставленные перед ним, то часть его работы возьмет на себя другой.

Впервые "Дракон" был выведен на орбиту в 2010 году. Успешно завершился испытательный беспилотный полет. А в 2012 году, 25 мая, этот аппарат пристыковался к МКС. К тому моменту на корабле системы автоматической стыковки не было предусмотрено, и пришлось для ее осуществления воспользоваться манипулятором космической станции.

"Дрим Чейзер"

"Дрим Чейзер" - еще одно название космических кораблей будущего. Нельзя не упомянуть этот проект компании SpaceDev. Также в его разработке приняли участие 12 партнеров компании, 3 университета США и 7 центров NASA. Данный корабль существенно отличается от других космических разработок. Он напоминает внешне "Спейс шаттл" в миниатюре и может осуществлять посадку так же, как и обычный самолет. Основные его задачи схожи с задачами, стоящими перед CST-100 и "Драконом". Аппарат предназначен для доставки экипажа и грузов на околоземную орбиту, а выводиться туда он будет с помощью "Атласа-5".

А что у нас?

А чем же может ответить Россия? Каковы российские космические корабли будущего? РКК "Энергия" в 2000 году начала проектирование космического комплекса "Клипер", являющегося многоцелевым. Этот космический аппарат многоразовый, напоминающий чем-то внешне "шаттл", уменьшенный в размерах. Он предназначен для решения различных задач, таких как доставка груза, космический туризм, эвакуация экипажа станции, полеты на другие планеты. Определенные надежды возлагались на этот проект.

Предполагалось, что космические корабли будущего России будут вскоре сконструированы. Однако из-за отсутствия финансирования пришлось с этими надеждами распрощаться. Проект закрыли в 2006 году. Технологии, которые были разработаны за эти годы, планируется использовать для проектирования ППТС, известной также как проект "Русь".

Особенности ППТС

Лучшие космические корабли будущего, как полагают специалисты из России, - это ППТС. Именно этой космической системе суждено будет стать новым поколением космических аппаратов. Она будет способна заменить "Прогрессы" и "Союзы", стремительно устаревающие. Разработкой этого корабля, как в прошлом "Клипера", занимается сегодня РКК "Энергия". ПТК НК станет базовой модификацией этого комплекса. Основная задача его, опять же, будет заключаться в доставке экипажа и грузов на МКС. Однако в отдаленной перспективе находится разработка модификаций, которые будут способны летать на Луну, а также выполнять различные исследовательские миссии, продолжительные по времени.

Сам корабль должен стать частично многоразовым. Будет повторно использована жидкая капсула после совершения посадки, а вот двигательно-агрегатный отсек - не будет. Любопытной особенностью данного корабля является возможность его посадки без парашюта. Реактивная система будет применяться для торможения и приземления на земную поверхность.

Новый космодром

В отличие от "Союзов", которые взлетают с расположенного в Казахстане космодрома "Байконур", новые корабли планируется запускать со строящегося в Амурской области космодрома "Восточный". 6 человек составит экипаж. Аппарат может также брать груз весом до 500 кг. Корабль в беспилотной версии может доставлять грузы до 2-х тонн весом.

Проблемы, стоящие перед разработчиками ППТС

Одной из основных проблем, стоящих перед проектом ППТС, является отсутствие ракет-носителей с необходимыми характеристиками. Основные технические моменты космического аппарата сегодня проработаны, однако в весьма затруднительное положение ставит его разработчиков отсутствие ракеты-носителя. Предполагается, что она будет близка по характеристикам к "Ангаре", которая была разработана еще в 90-е годы.

Другой серьезной проблемой, как ни странно, является цель проектирования ППТС. Едва ли Россия сегодня может позволить себе осуществление амбициозных программ по освоению Марса и Луны, аналогичных тем, которые претворяют в жизнь Соединенные Штаты. Даже если космический комплекс будет успешно разработан, скорее всего, единственной его задачей останется доставка экипажа и грузов на МКС. До 2018 года отложено начало испытаний ППТС. Перспективные аппараты из США к этому времени, скорее всего, уже возьмут на себя функции, выполняемые сегодня российскими кораблями "Прогресс" и "Союз".

Туманные перспективы космических полетов

Фактом является то, что мир сегодня остается лишенным романтики космических полетов. Речь, конечно, идет не о космическом туризме и запуске спутников. Можно не беспокоиться за эти сферы космонавтики. Полеты на МКС очень важны для космической отрасли, однако срок пребывания на орбите самой МКС ограничен. В 2020 году планируется ликвидировать эту станцию. А пилотируемые космические корабли будущего являются составной частью конкретной программы. Нельзя разрабатывать новый аппарат в случае отсутствия представлений о стоящих перед ним задачах. Не только для доставки экипажей и грузов МКС проектируются новые космические корабли будущего в США, но также для полетов на Луну и Марс. Однако данные задачи от повседневных земных забот настолько далеки, что нам вряд ли стоит ожидать в ближайшие годы значительных прорывов в сфере космонавтики. Космические угрозы остаются фантастикой, поэтому нет смысла конструировать боевые космические корабли будущего. И, конечно, у держав Земли множество других забот, кроме борьбы друг с другом за место на орбите и других планетах. Строительство таких аппаратов, как военные космические корабли будущего, поэтому также нецелесообразно.

Солнечная система уже давно не представляет особого интереса для фантастов. Но, что удивительно, и у некоторых ученых наши «родные» планеты не вызывают особого вдохновения, хотя они еще практически не исследованы.

Едва прорубив окно в космос, человечество рвется в неведомые дали, причем уже не только в мечтах, как раньше.
Еще Сергей Королев обещал в скором времени полеты в космос «по профсоюзной путевке», но этой фразе уже полвека, а космическая одиссея по-прежнему удел избранных - слишком дорогое удовольствие. Однако же два года назад HACA запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технического фундамента для космических полетов.


Эта беспрецедентная программа должна привлечь ученых, инженеров и энтузиастов со всего мира. Если все увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться, как на трамваях.

Так какие же проблемы нужно решить, чтобы звездные полеты стали реальностью?

ВРЕМЯ И СКОРОСТЬ ОТНОСИТЕЛЬНЫ

Звездоплавание автоматических аппаратов кажется некоторым ученым почти решенной задачей, как это ни странно. И это при том, что совершенно нет никакого смысла запускать автоматы к звездам с нынешними черепашьими скоростями (примерно 17 км/с) и прочим примитивным (для таких неведомых дорог) оснащением.

Сейчас за пределы Солнечной системы ушли американские космические аппараты «Пионер-10» и «Вояджер-1», связи с ними уже нет. «Пионер-10» движется в сторону звезды Альдебаран. Если с ним ничего не случится, он достигнет окрестностей этой звезды... через 2 миллиона лет. Точно так же ползут по просторам Вселенной и другие аппараты.

Итак, независимо от того, обитаем корабль или нет, для полета к звездам ему нужна высокая скорость, близкая к скорости света. Впрочем, это поможет решить проблему полета только к самым близким звездам.

«Даже если бы мы умудрились построить звездный корабль, который сможет летать со скоростью, близкой к скорости света, - писал К. Феоктистов, - время путешествий только по нашей Галактике будет исчисляться тысячелетиями и десятками тысячелетий, так как диаметр ее составляет около 100 000 световых лет. Но на Земле-то за это время пройдет намного больше».

Согласно теории относительности, ход времени в двух движущихся одна относительно другой системах различен. Так как на больших расстояниях корабль успеет развить скорость очень близкую к скорости света, разница во времени на Земле и на корабле будет особенно велика.

Предполагается, что первой целью межзвездных полетов станет альфа Центавра (система из трех звезд) - наиболее близкая к нам. Со скоростью света туда можно долететь за 4,5 года, на Земле за это время пройдет лет десять. Но чем больше расстояние, тем сильней разница во времени.

Помните знаменитую «Туманность Андромеды» Ивана Ефремова? Там полет измеряется годами, причем земными. Красивая сказка, ничего не скажешь. Однако эта вожделенная туманность (точнее, галактика Андромеды) находится от нас на расстоянии 2,5 миллиона световых лет.



По некоторым расчетам, путешествие займет у космонавтов более 60 лет (по звездолетным часам), но на Земле-то пройдет целая эра. Как встретят космических «неадертальцев» их далекие потомки? Да и будет ли жива Земля вообще? То есть возвращение в принципе бессмысленно. Впрочем, как и сам полет: надо помнить, что мы видим галактику туманность Андромеды такой, какой она была 2,5 млн лет назад - столько идет до нас ее свет. Какой смысл лететь к неизвестной цели, которой, может, уже давно и не существует, во всяком случае, в прежнем виде и на старом месте?

Значит, даже полеты со скоростью света обоснованны только до относительно близких звезд. Однако аппараты, летящие со скоростью света, живут пока лишь в теории, которая напоминает фантастику, правда, научную.

КОРАБЛЬ РАЗМЕРОМ С ПЛАНЕТУ

Естественно, в первую очередь ученым пришла мысль использовать в двигателе корабля наиболее эффективную термоядерную реакцию - как уже частично освоенную (в военных целях). Однако для путешествия в оба конца со скоростью, близкой к световой, даже при идеальной конструкции системы, требуется отношение начальной массы к конечной не менее чем 10 в тридцатой степени. То есть звездолет будет походить на огромный состав с топливом величиной с маленькую планету. Запустить такую махину в космос с Земли невозможно. Да и собрать на орбите - тоже, недаром ученые не обсуждают этот вариант.

Весьма популярна идея фотонного двигателя, использующего принцип аннигиляции материи.

Аннигиляция - это превращение частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных. Наиболее изучена аннигиляция электрона и позитрона, порождающая фотоны, энергия которых и будет двигать звездолет. Расчеты американских физиков Ронана Кина и Вей-мин Чжана показывают, что на основе современных технологий возможно создание аннигиляционного двигателя, способного разогнать космический корабль до 70% от скорости света.

Однако дальше начинаются сплошные проблемы. К сожалению, применить антивещество в качестве ракетного топлива очень непросто. Во время аннигиляции происходят вспышки мощнейшего гамма-излучения, губительного для космонавтов. Кроме того, контакт позитронного топлива с кораблем чреват фатальным взрывом. Наконец, пока еще нет технологий для получения достаточного количества антивещества и его длительного хранения: например, атом антиводорода «живет» сейчас менее 20 минут, а производство миллиграмма позитронов обходится в 25 миллионов долларов.

Но, предположим, со временем эти проблемы удастся разрешить. Однако топлива все равно понадобится очень-очень много, и стартовая масса фотонного звездолета будет сравнима с массой Луны (по оценке Константина Феоктистова).

ПОРВАЛИ ПАРУС!

Наиболее популярным и реалистичным звездолетом на сегодняшний день считается солнечный парусник, идея которого принадлежит советскому ученому Фридриху Цандеру.

Солнечный (световой, фотонный) парус - это приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение космического аппарата.
В 1985 году американским физиком Робертом Форвардом была предложена конструкция межзвездного зонда, разгоняемого энергией микроволнового излучения. Проектом предусматривалось, что зонд достигнет ближайших звезд за 21 год.

На XXXVI Международном астрономическом конгрессе был предложен проект лазерного звездолета, движение которого обеспечивается энергией лазеров оптического диапазона, расположенных на орбите вокруг Меркурия. По расчетам, путь звездолета этой конструкции до звезды эпсилон Эридана (10,8 световых лет) и обратно занял бы 51 год.

«Маловероятно, что по данным, полученным в путешествиях по нашей Солнечной системе, мы сможем существенно продвинуться вперед в понимании мира, в котором мы живем. Естественно, мысль обращается к звездам. Ведь раньше подразумевалось, что полеты около Земли, полеты к другим планетам нашей Солнечной системы не являются конечной целью. Проложить дорогу к звездам представлялось главной задачей».

Эти слова принадлежат не фантасту, а конструктору космических кораблей и космонавту Константину Феоктистову. По мнению ученого, ничего особо нового в Солнечной системе уже не обнаружится. И это при том, что человек пока долетел только до Луны...


Однако за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида.

Все это пока теория, однако первые шаги уже делаются.

В 1993 году на российском корабле «Прогресс М-15» в рамках роекта «Знамя-2» был впервые развернут солнечный парус 20-метровой ширины. При стыковке «Прогресса» со станцией «Мир» ее экипаж установил на борту «Прогресса» агрегат развертывания отражателя. В итоге отражатель создал яркое пятно 5 км в ширину, которое прошло через Европу в Россию со скоростью 8 км/с. Пятно света имело светимость, примерно эквивалентную полной Луне.



Итак, преимущество солнечного парусника - отсутствие топлива на борту, недостатки - уязвимость конструкции паруса: по сути, это тонкая фольга, натянутая на каркас. Где гарантия, что по дороге парус не получит пробоин от космических частиц?

Парусный вариант может подойти для запуска автоматических зондов, станций и грузовых кораблей, но непригоден для пилотируемых полетов с возвратом. Существуют и другие проекты звездолетов, однако они, так или иначе, напоминают вышеперечисленные (с такими же масштабными проблемами).

СЮРПРИЗЫ В МЕЖЗВЕЗДНОМ ПРОСТРАНСТВЕ

Думается, путешественников во Вселенной поджидает множество сюрпризов. К примеру, едва высунувшись за пределы Солнечной системы, американский аппарат «Пионер-10» начал испытывать силу неизвестного происхождения, вызывающую слабое торможение. Высказывалось много предположений, вплоть до о неизвестных пока эффектах инерции или даже времени. Однозначного объяснения этому феномену до сих пор нет, рассматриваются самые различные гипотезы: от простых технических (например, реактивная сила от утечки газа в аппарате) до введения новых физических законов.

Другой аппарат, «Вояд-жер-1», зафиксировал на границе Солнечной системы область с сильным магнитным полем. В нем давление заряженных частиц со стороны межзвездного пространства заставляет поле, создаваемое Солнцем, уплотняться. Также аппарат зарегистрировал:

  • рост количества высокоэнергетических электронов (примерно в 100 раз), которые проникают в Солнечную систему из межзвездного пространства;
  • резкий рост уровня галактических космических лучей - высокоэнергетических заряженных частиц межзвездного происхождения.
И это только капля в море! Впрочем, и того, что сегодня известно о межзвездном океане, достаточно, чтобы поставить под сомнение саму возможность бороздить просторы Вселенной.

Пространство между звездами не пустое. Везде есть остатки газа, пыли, частицы. При попытке движения со скоростью, близкой к скорости света, каждый столкнувшийся с кораблем атом будет подобен частице космических лучей большой энергии. Уровень жесткой радиации при такой бомбардировке недопустимо повысится даже при полетах к ближайшим звездам.

А механическое воздействие частиц при таких скоростях уподобится разрывным пулям. По некоторым расчетам, каждый сантиметр защитного экрана звездолета будет непрерывно обстреливаться с частотой 12 выстрелов в минуту. Ясно, что никакой экран не выдержит такого воздействия на протяжении нескольких лет полета. Или должен будет иметь неприемлемую толщину (десятки и сотни метров) и массу (сотни тысяч тонн).



Собственно, тогда звездолет будет состоять в основном из этого экрана и топлива, которого потребуется несколько миллионов тонн. В силу этих обстоятельств полеты на таких скоростях невозможны, тем паче, что по дороге можно нарваться не только на пыль, но и на что-то покрупнее, или попасть в ловушку неизвестного гравитационного поля. И тогда гибель опять-таки неминуема. Таким образом, если и удастся разогнать звездолет до субсветовой скорости, то до конечной цели он не долетит - слишком много препятствий встретится ему на пути. Поэтому межзвездные перелеты могут осуществляться лишь с существенно меньшими скоростями. Но тогда фактор времени делает эти полеты бессмысленными.

Получается, что решить проблему транспортировки материальных тел на галактические расстояния со скоростями, близкими к скорости света, нельзя. Бессмысленно ломиться через пространство и время с помощью механической конструкции.

КРОТОВАЯ НОРА

Фантасты, стараясь побороть неумолимое время, сочинили, как «прогрызать дырки» в пространстве (и времени) и «сворачивать» его. Придумали разнообразные гиперпространственные скачки от одной точки пространства до другой, минуя промежуточные области. Теперь к фантастам присоединились ученые.

Физики принялись искать экстремальные состояния материи и экзотические лазейки во Вселенной, где можно передвигаться со сверхсветовой скоростью вопреки теории относительности Эйнштейна.



Так появилась идея кротовой норы. Эта нора осуществляет смычку двух частей Вселенной подобно прорубленному тоннелю, соединяющему два города, разделенные высокой горой. К сожалению, кротовые норы возможны только в абсолютном вакууме. В нашей Вселенной эти норки крайне неустойчивы: они попросту могут сколлапсировать до того, как туда попадет космический корабль.

Однако для создания стабильных кротовых нор можно использовать эффект, открытый голландцем Хендриком Казимиром. Он заключается во взаимном притяжении проводящих незаряженных тел под действием квантовых колебаний в вакууме. Оказывается, вакуум не совсем пуст, в нем происходят колебания гравитационного поля, в котором спонтанно возникают и исчезают частицы и микроскопические кротовые норы.

Остается только обнаружить одну из нор и растянуть ее, поместив между двумя сверхпроводящими шарами. Одно устье кротовой норы останется на Земле, другое космический корабль с околосветовой скоростью переместит к звезде - конечному объекту. То есть звездолет будет как бы пробивать тоннель. По достижении звездолетом пункта назначения кротовая нора откроется для реальных молниеносных межзвездных путешествий, продолжительность которых будет исчисляться минутами.

ПУЗЫРЬ ИСКРИВЛЕНИЯ

Сродни теории кротовых нор пузырь искривления. В 1994 году мексиканский физик Мигель Алькубьерре выполнил расчеты согласно уравнениям Эйнштейна и нашел теоретическую возможность волновой деформации пространственного континуума. При этом пространство будет сжиматься перед космическим кораблем и одновременно расширяться позади него. Звездолет как бы помещается в пузырь искривления, способный передвигаться с неограниченной скоростью. Гениальность идеи состоит в том, что космический корабль покоится в пузыре искривления, и законы теории относительности не нарушаются. Движется при этом сам пузырь искривления, локально искажающий пространство-время.

Несмотря на невозможность перемещаться быстрее света, ничто не препятствует перемещению пространства или распространению деформации пространства-времени быстрее света, что, как полагают, и происходило сразу после Большого взрыва при образовании Вселенной.

Все эти идей пока не укладываются в рамки современной науки, однако в 2012 году представители НАСА заявили о подготовке экспериментальной проверки теории доктора Алькубьерре. Как знать, может, и теория относительности Эйнштейна когда-нибудь станет частью новой глобальной теории. Ведь процесс познания бесконечен. А значит, однажды мы сможем прорваться чрез тернии к звездам.

Ирина ГРОМОВА

Однако «Интерстеллар» является просто научной фантастикой, а доктор Уайт, в свою очередь, работает во вполне реальной сфере разработки продвинутых технологий для космических передвижений в лаборатории NASA. Здесь уже нет места научной фантастике. Здесь реальная наука. И если отбросить все проблемы, связанные с урезанным бюджетом аэрокосмического агентства, то следующие слова Уайта выглядят вполне многообещающе:

«Возможно, опыт «Стартрека» в рамках нашего времени не является настолько уж и удаленной возможностью».

Другими словами, доктор Уайт хочет сказать, что он и его коллеги не заняты созданием какого-то гипотетического фильма, или простыми 3D-набросками и идеями, связанными с варп-двигателем. Они не просто считают, что создание варп-двигателя в реальной жизни представляется с теоретической точки зрения возможным. Они на самом деле разрабатывают первый варп-двигатель:

«Работая в лаборатории Eagleworks, в глубоких недрах Космического центра Джонсона, принадлежащего NASA, доктор Уайт и его команда ученых стараются найти лазейки, которые бы позволили воплотить мечту в реальность. Команда уже «создала симуляционный стенд для теста специального интерферометра, за счет которого ученые попытаются сгенерировать и определить микроскопические варп-пузыри. Устройство получило название интерферометр варп-поля Уайта-Джеди».

Сейчас это может показаться незначительным достижением, однако те открытия, которые стоят за этим изобретением, могут оказаться бесконечно полезными в дальнейших исследованиях.

«Несмотря на то, что это лишь небольшое продвижение в этом направлении, оно уже может являться доказательством существования самой возможности варп-двигателя, как в свое время являлся показ Чикагской поленницы (первого искусственного ядерного реактора). В декабре 1942 года была проведена первая в истории демонстрация управляемой самоподдерживающейся цепной ядерной реакции, в результате которой было выработано целых полватта электрической энергии. Вскоре после демонстрации, в ноябре 1943 года, был запущен реактор мощностью уже около четырех мегаватт. Приведение доказательства существования является критическим моментом для научной идеи и может стать отправной точкой в развитии технологий».

Если работа ученых в конечном итоге окажется успешной, то, по мнению доктора Уайта, будет создан двигатель, которой сможет доставить нас до Альфы Центавра «в течение двух недель по меркам земного времени». При этом течение времени на корабле будет таким же, как и на Земле.

«Приливные силы внутри варп-пузыря не будут вызывать проблем у человека, и все путешествие будет восприниматься им так, как если бы он находился в условиях нулевого ускорения. При включении варп-поля никого не притянет с огромной силой к корпусу корабля, нет, в этом бы случае путешествие оказалось бы очень коротким и трагичным».