Умножение чисел со знаком множитель отрицательный. Умножение положительных и отрицательных чисел. Правило деления отрицательных чисел


В данной статье дается подробный обзор деления чисел с разными знаками . Сначала приведено правило деления чисел с разными знаками. Ниже разобраны примеры деления положительных чисел на отрицательные и отрицательных чисел на положительные.

Навигация по странице.

Правило деления чисел с разными знаками

В статье деление целых чисел было получено правило деления целых чисел с разными знаками . Его можно распространить и на рациональные числа , и на действительные числа , повторив все рассуждения из указанной статьи.

Итак, правило деления чисел с разными знаками имеет следующую формулировку: чтобы разделить положительное число на отрицательное или отрицательное число на положительное, надо делимого разделить на модуль делителя, и перед полученным числом поставить знак минус.

Запишем это правило деления с помощью букв. Если числа a и b имеют разные знаки, то справедлива формула a:b=−|a|:|b| .

Из озвученного правила понятно, что результатом деления чисел с разными знаками является отрицательное число. Действительно, так как модуль делимого и модуль делителя есть положительнее числа, то их частное есть положительное число, а знак минус делает это число отрицательным.

Отметим, что рассмотренное правило сводит деление чисел с разными знаками к делению положительных чисел.

Можно привести другую формулировку правила деления чисел с разными знаками: чтобы разделить число a на число b , нужно число a умножить на число b −1 , обратное числу b . То есть, a:b=a·b −1 .

Это правило можно использовать, когда есть возможность выходить за пределы множества целых чисел (так как далеко не каждое целое число имеет обратное). Иными словами, оно применимо на множестве рациональных, а также на множестве действительных чисел.

Понятно, это правило деления чисел с разными знаками позволяет от деления перейти к умножению.

Это же правило используется при делении отрицательных чисел .

Осталось рассмотреть, как данное правило деления чисел с разными знаками применяется при решении примеров.

Примеры деления чисел с разными знаками

Рассмотрим решения нескольких характерных примеров деления чисел с разными знаками , чтобы усвоить принцип применения правил из предыдущего пункта.

Пример.

Разделите отрицательное число −35 на положительное число 7 .

Решение.

Правило деления чисел с разными знаками предписывает сначала найти модули делимого и делителя. Модуль числа −35 равен 35 , а модуль числа 7 равен 7 . Теперь нам нужно разделить модуль делимого на модуль делителя, то есть, надо разделить 35 на 7 . Вспомнив, как выполняется деление натуральных чисел , получаем 35:7=5 . Остался последний шаг правила деления чисел с разными знаками – поставить минус перед полученным числом, имеем −5 .

Вот все решение: .

Можно было исходить из другой формулировки правила деления чисел с разными знаками. В этом случае сначала находим число, обратное делителю 7 . Этим числом является обыкновенная дробь 1/7 . Таким образом, . Осталось выполнить умножение чисел с разными знаками : . Очевидно, мы пришли к такому же результату.

Ответ:

(−35):7=−5 .

Пример.

Вычислите частное 8:(−60) .

Решение.

По правилу деления чисел с разными знаками имеем 8:(−60)=−(|8|:|−60|)=−(8:60) . Полученному выражению соответствует отрицательная обыкновенная дробь (смотрите знак деления как черта дроби), можно провести сокращение дроби на 4 , получаем .

Запишем все решение кратко: .

Ответ:

.

При делении дробных рациональных чисел с разными знаками их обычно делимое и делитель представляют в виде обыкновенных дробей. Это связано с тем, что с числами в другой записи (например, в десятичной) не всегда удобно выполнять деление.

Пример.

Решение.

Модуль делимого равен , а модуль делителя равен 0,(23) . Чтобы провести деление модуля делимого на модуль делителя, перейдем к обыкновенным дробям.

Осуществим перевод смешанного числа в обыкновенную дробь : , а также

§ 1 Умножение положительных и отрицательных чисел

В этом уроке познакомимся с правилами умножения и деления положительных и отрицательных чисел.

Известно, что любое произведение можно представить в виде суммы одинаковых слагаемых.

Cлагаемое -1 нужно сложить 6 раз:

(-1)+(-1)+(-1) +(-1) +(-1) + (-1) =-6

Значит произведение -1 и 6 равно -6.

Числа 6 и -6 -противоположные числа.

Таким образом, можно сделать вывод:

При умножении -1 на натуральное число получится противоположное ему число.

Для отрицательных чисел, так же как для положительных, выполняется переместительный закон умножения:

Если натуральное число умножить на -1, то также получится противоположное число

При умножении любого неотрицательного числа на 1 получится это же число.

Например:

Для отрицательных чисел данное утверждение тоже верно: -5 ∙1 = -5; -2 ∙ 1 = -2.

При умножении любого числа на 1 получится это же число.

Мы уже убедились, что при умножении минус 1 на натуральное число получится противоположное ему число. При умножении отрицательного числа данное утверждение тоже справедливо.

Например: (-1) ∙ (-4) = 4.

Также -1 ∙ 0 = 0, число 0 противоположно само себе.

При умножении любого числа на минус 1 получится противоположное ему число.

Перейдем к другим случаям умножения. Найдем произведение чисел -3 и 7.

Отрицательный множитель -3 можно заменить произведением -1 и 3. Тогда можно применить сочетательный закон умножения:

1 ∙ 21 = -21, т.е. произведение минус 3 и 7 равно минус 21.

При умножении двух чисел с разными знаками получается отрицательное число, модуль которого равен произведению модулей множителей.

А чему равно произведение чисел с одинаковыми знаками?

Мы знаем, что при умножении двух положительных чисел получится положительное число. Найдем произведение двух отрицательных чисел.

Заменим один из множителей произведением с множителем минус 1.

Применим выведенное нами правило, при умножении двух чисел с разными знаками получается отрицательное число, модуль которого равен произведению модулей множителей,

получится -80.

Сформулируем правило:

При умножении двух чисел с одинаковыми знаками получается положительное число, модуль которого равен произведению модулей множителей.

§ 2 Деление положительных и отрицательных чисел

Перейдем к делению.

Подбором найдем корни следующих уравнений:

y ∙ (-2) = 10. 5 ∙ 2 = 10, значит х = 5; 5 ∙ (-2) = -10, значит а = 5; -5 ∙ (-2) = 10, значит y = -5.

Запишем решения уравнений. В каждом уравнении неизвестен множитель. Неизвестный множитель находим, разделив произведение на известный множитель, значения неизвестных множителей мы уже подобрали.

Проанализируем.

При делении чисел с одинаковыми знаками (а это первое и второе уравнения) получается положительное число, модуль которого равен частному модулей делимого и делителя.

При делении чисел с разными знаками (это третье уравнение) получается отрицательное число, модуль которого равен частному модулей делимого и делителя. Т.е. при делении положительных и отрицательных чисел знак частного определяется по тем же правилам, что знак произведения. А модуль частного равен частному модулей делимого и делителя.

Таким образом, мы сформулировали правила умножения и деления положительных и отрицательных чисел.

Список использованной литературы:

  1. Математика. 6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича//автор-составитель Л.А. Топилина. – Мнемозина, 2009.
  2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И. Зубарева, А.Г. Мордкович. - М.: Мнемозина, 2013.
  3. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений./Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.: Мнемозина, 2013.
  4. Справочник по математике - http://lyudmilanik.com.ua
  5. Справочник для учащихся в средней школе http://shkolo.ru

В центре внимания этой статьи находится деление отрицательных чисел . Сначала дано правило деления отрицательного числа на отрицательное, приведено его обоснования, а после этого приведены примеры деления отрицательных чисел с подробным описанием решений.

Навигация по странице.

Правило деления отрицательных чисел

Прежде чем дать правило деления отрицательных чисел, напомним смысл действия деление. Деление по своей сути представляет нахождение неизвестного множителя по известному произведению и известному другому множителю. То есть, число c является частным от деления a на b , когда c·b=a , и наоборот, если c·b=a , то a:b=c .

Правило деления отрицательных чисел следующее: частное от деления одного отрицательного числа на другое равно частному от деления числителя на модуль знаменателя.

Запишем озвученное правило с помощью букв. Если a и b отрицательные числа, то справедливо равенство a:b=|a|:|b| .

Равенство a:b=a·b −1 легко доказать, отталкиваясь от свойств умножения действительных чисел и определения взаимно обратных чисел. Действительно, на этой основе можно записать цепочку равенств вида (a·b −1)·b=a·(b −1 ·b)=a·1=a , которая в силу смысла деления, упомянутого в начале статьи, доказывает, что a·b −1 есть частное от деления a на b .

А это правило позволяет от деления отрицательных чисел перейти к умножению.

Осталось рассмотреть применение рассмотренных правил деления отрицательных чисел при решении примеров.

Примеры деления отрицательных чисел

Разберем примеры деления отрицательных чисел . Начнем с простых случаев, на которых отработаем применение правила деления.

Пример.

Разделите отрицательное число −18 на отрицательное число −3 , после этого вычислите частное (−5):(−2) .

Решение.

По правилу деления отрицательных чисел частное от деления −18 на −3 равно частному от деления модулей этих чисел. Так как |−18|=18 и |−3|=3 , то (−18):(−3)=|−18|:|−3|=18:3 , осталось лишь выполнить деление натуральных чисел , имеем 18:3=6 .

Аналогично решаем вторую часть задания. Так как |−5|=5 и |−2|=2 , то (−5):(−2)=|−5|:|−2|=5:2 . Этому частному отвечает обыкновенная дробь 5/2 , которую можно записать в виде смешанного числа .

Эти же результаты получаются, если использовать другое правило деления отрицательных чисел. Действительно, числу −3 обратно число , тогда , теперь выполняем умножение отрицательных чисел : . Аналогично, .

Ответ:

(−18):(−3)=6 и .

При делении дробных рациональных чисел удобнее всего работать с обыкновенными дробями. Но, если удобно, то можно делить и конечные десятичные дроби .

Пример.

Выполните деление числа −0,004 на −0,25 .

Решение.

Модули делимого и делителя равны соответственно 0,004 и 0,25 , тогда по правилу деления отрицательных чисел имеем (−0,004):(−0,25)=0,004:0,25 .

  • либо выполнить деление десятичных дробей столбиком ,
  • либо перейти от десятичных дробей к обыкновенным, после чего разделить соответствующие обыкновенные дроби.

Разберем оба подхода.

Чтобы разделить столбиком 0,004 на 0,25 сначала перенесем запятую на 2 цифры вправо, при этом придем к делению 0,4 на 25 . Теперь выполняем деление столбиком:

Таким образом, 0,004:0,25=0,016 .

А теперь покажем, как бы выглядело решение, если бы мы решили осуществить перевод десятичных дробей в обыкновенные . Так как и , то , и выполняем

Задача 1. Точка движется по прямой слева направо со скоростью 4 дм. в секунду и в настоящий момент проходит через точку A. Где будет находиться движущаяся точка по прошествии 5 секунд?

Нетрудно сообразить, что точка будет находиться на 20 дм. вправо от A. Запишем решение этой задачи относительными числами. Для этого условимся в следующих знакоположениях:

1) скорость вправо будем обозначать знаком +, а влево знаком –, 2) расстояние движущейся точки от A вправо будем обозначать знаком + и влево знаком –, 3) промежуток времени после настоящего момента знаком + и до настоящего момента знаком –. В нашей задаче даны, след., такие числа: скорость = + 4 дм. в секунду, время = + 5 секунд и получилось, как сообразили арифметически, число + 20 дм., выражающее расстояние движущейся точки от A через 5 секунд. По смыслу задачи мы видим, что она относится к умножению. Поэтому решение задачи удобно записать:

(+ 4) ∙ (+ 5) = + 20.

Задача 2. Точка движется по прямой слева направо со скоростью по 4 дм. в секунду и в настоящий момент проходит через точку A. Где находилась эта точка 5 секунд назад?

Ответ ясен: точка находилась влево от A на расстоянии 20 дм.

Решение удобно, согласно условиям относительно знаков, и, имея в виду, что смысл задачи не изменился, записать так:

(+ 4) ∙ (– 5) = – 20.

Задача 3. Точка движется по прямой справа налево со скоростью 4 дм. в секунду и в настоящий момент проходит через точку A. Где будет находиться движущаяся точка спустя 5 секунд?

Ответ ясен: на 20 дм. слева от A. Поэтому, согласно тем же условиям относительно знаков, мы можем записать решение этой задачи так:

(– 4) ∙ (+ 5) = – 20.

Задача 4. Точка движется по прямой справа налево со скоростью по 4 дм. в секунду и в настоящий момент проходит через точку A. Где находилась движущаяся точка 5 секунд тому назад?

Ответ ясен: на расстоянии 20 дм. справа от A. Поэтому решение этой задачи следует записать так:

(– 4) ∙ (– 5) = + 20.

Рассмотренные задачи указывают, как следует распространить действие умножения на относительные числа. Мы имеем в задачах 4 случая умножения чисел со всевозможными комбинациями знаков:

1) (+ 4) ∙ (+ 5) = + 20;
2) (+ 4) ∙ (– 5) = – 20;
3) (– 4) ∙ (+ 5) = – 20;
4) (– 4) ∙ (– 5) = + 20.

Во всех четырех случаях абсолютные величины данных чисел следует перемножить, у произведения приходится ставить знак + тогда, когда у множителей одинаковые знаки (1-й и 4-й случаи) и знак –, когда у множителей разные знаки (случаи 2-й и 3-й).

Отсюда же видим, что от перестановки множимого и множителя произведение не изменяется.

Упражнения.

Выполним один пример на вычисление, где входят и сложение и вычитание и умножение.

Чтобы не спутать порядка действий, обратим внимание на формулу

Здесь написана сумма произведений двух пар чисел: надо, следовательно, сперва число a умножить на число b, потом число c умножить на число d и затем полученные произведения сложить. Также в формуле

надо сперва число b умножить на c и затем полученное произведение вычесть из a.

Если бы требовалось произведение чисел a и b сложить с c и полученную сумму умножить на d, то следовало бы написать: (ab + c)d (сравнить с формулой ab + cd).

Если бы надо было разность чисел a и b умножить на c, то написали бы (a – b)c (сравнить с формулой a – bc).

Поэтому установим вообще, что если порядок действий не обозначен скобками, то надо сначала выполнить умножение, а потом уже сложение или вычитание.

Приступаем к вычислению нашего выражения: выполним сначала сложения, написанные внутри всех маленьких скобок, получим:

Теперь надо выполнить умножение внутри квадратных скобок и затем из вычтем полученное произведение:

Теперь выполним действия внутри витых скобок: сначала умножение и потом вычитание:

Теперь останется выполнить умножение и вычитание:

16. Произведение нескольких множителей. Пусть требуется найти

(–5) ∙ (+4) ∙ (–2) ∙ (–3) ∙ (+7) ∙ (–1) ∙ (+5).

Здесь надо первое число умножить на второе, полученное произведение на 3-е и т. д. Не трудно на основании предыдущего установить, что абсолютные величины всех чисел надо между собою перемножить.

Если бы все множители были положительны, то на основании предыдущего найдем, что и у произведения надо написать знак +. Если бы какой-либо один множитель был отрицателен

напр., (+2) ∙ (+3) ∙ (+4) ∙ (–1) ∙ (+5) ∙ (+6),

то произведение всех предшествующих ему множителей дало бы знак + (в нашем примере (+2) ∙ (+3) ∙ (+4) = +24, от умножения полученного произведения на отрицательное число (в нашем примере +24 умножить на –1) получили бы у нового произведения знак –; умножив его на следующий положительный множитель (в нашем примере –24 на +5), получим опять отрицательное число; так как все остальные множители предполагаются положительными, то знак у произведения более изменяться не может.

Если бы было два отрицательных множителя, то, рассуждая, как выше, нашли бы, что сначала, пока не дошил до первого отрицательного множителя, произведение было бы положительно, от умножения его на первый отрицательный множитель новое произведение получилось бы отрицательным и таковы бы оно и оставалось до тех пор, пока не дойдем до второго отрицательного множителя; тогда от умножения отрицательного числа на отрицательно новое произведение получилось бы положительным, которое таким останется и в дальнейшем, если остальные множители положительны.

Если бы был еще третий отрицательный множитель, то полученное положительно произведение от умножения его на этот третий отрицательный множитель сделалось бы отрицательным; оно таковым бы и осталось, если остальные множители были все положительны. Но если есть еще четвертый отрицательный множитель, то от умножения на него произведение сделается положительным. Рассуждая так же, найдем, что вообще:

Чтобы узнать знак произведения нескольких множителей, надо посмотреть, сколько среди этих множителей отрицательных: если их вовсе нет, или если их четное число, то произведение положительно: если же отрицательных множителей нечетное число, то произведение отрицательно.

Итак, теперь мы легко узнаем, что

(–5) ∙ (+4) ∙ (–2) ∙ (–3) ∙ (+7) ∙ (–1) ∙ (+5) = +4200.

(+3) ∙ (–2) ∙ (+7) ∙ (+3) ∙ (–5) ∙ (–1) = –630.

Теперь нетрудно видеть, что знак произведения, а также и его абсолютная величина, не зависят от порядка множителей.

Удобно, когда имеем дело с дробными числами, находить произведение сразу:

Удобно это потому, то не приходится делать бесполезных умножений, так как предварительно полученное дробное выражение сокращается, сколько возможно.

На этом уроке мы повторим правила сложения положительных и отрицательных чисел. Также научимся умножать числа с разными знаками и узнаем правила знаков для умножения. Рассмотрим примеры умножения положительных и отрицательных чисел.

Свойство умножения на ноль остается верным и в случае отрицательных чисел. Ноль умножить на любое число - будет ноль.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия. 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. - М.: Просвещение, Библиотека учителя математики, 1989.

Домашнее задание

  1. Интернет-портал Mnemonica.ru ().
  2. Интернет-портал Youtube.com ().
  3. Интернет-портал School-assistant.ru ().
  4. Интернет-портал Bymath.net ().