Каким может быть вещество химия. Химические вещества: в чем их опасность? классификация согласно санпин и госту. Из ионов состоят

В отличие от некоторых типов полей , как например электромагнитное .

Обычно (при сравнительно низких температурах и плотностях) вещество состоит из частиц , среди которых чаще всего встречаются электроны , протоны и нейтроны . Последние два образуют атомные ядра , а все вместе - атомы (атомное вещество), из которых - молекулы , кристаллы и так далее. В некоторых условиях, как например в нейтронных звёздах , могут существовать достаточно необычные виды вещества. Понятие вещества иногда используется и в философии как эквивалент латинского термина substantia .

Свойства вещества

Все вещества могут расширяться, сжиматься, превращаться в газ, жидкость или твёрдое тело. Их можно смешивать, получая новые вещества.

Каждому веществу присущ набор специфических свойств - объективных характеристик, которые определяют индивидуальность конкретного вещества и тем самым позволяют отличить его от всех других веществ. К наиболее характерным физико-химическим свойствам относятся константы - плотность , температура плавления , температура кипения , термодинамические характеристики , параметры кристаллической структуры , химические свойства .

Агрегатные состояния

Почти все химические вещества в принципе могут существовать в трёх агрегатных состояниях - твёрдом, жидком и газообразном. Так, лёд, жидкая вода и водяной пар - это твёрдое, жидкое и газообразное состояния одного и того же химического вещества - воды H 2 O. Твёрдая, жидкая и газообразная формы не являются индивидуальными характеристиками химических веществ, а соответствуют лишь различным, зависящим от внешних физических условий состояниям существования химических веществ. Поэтому нельзя приписывать воде только признак жидкости, кислороду - признак газа, а хлориду натрия - признак твёрдого состояния. Каждое из этих (и всех других веществ) при изменении условий может перейти в любое другое из трёх агрегатных состояний.

При переходе от идеальных моделей твёрдого, жидкого и газообразного состояний к реальным состояниям вещества обнаруживается несколько пограничных промежуточных типов, общеизвестными из которых являются аморфное (стеклообразное) состояние, состояние жидкого кристалла и высокоэластичное (полимерное) состояние. В связи с этим часто пользуются более широким понятием «фаза ».

В физике рассматривается четвёртое агрегатное состояние вещества - плазма , частично или полностью ионизованное вещество, в котором плотность положительных и отрицательных зарядов одинакова (плазма электронейтральна).

При некоторых условиях (обычно достаточно отличающихся от обычных) те или иные вещества могут переходить в такие особые состояния, как сверхтекучее и сверхпроводящее .

Вещество в химии

В химии веществом называется вид материи с определёнными химическими свойствами - способностью участвовать в химических реакциях определенным образом.

Все химические вещества состоят из частиц - атомов , ионов или молекул ; при этом молекула может быть определена, как наименьшая частица химического вещества, обладающая всеми его химическими свойствами. Фактически химические соединения могут быть представлены не только молекулами, но и другими частицами, которые могут менять свой состав. Химические свойства веществ, в отличие от физических, не зависят от

Окружающий мир материален. Материя бывает двух видов: вещество и поле. Объект химии – вещество (в том числе и влияние на вещество различных полей – звуковых, магнитных, электромагнитных и др.)

Вещество - все, что имеет массу покоя (т.е. характеризуется наличием массы тогда, когда не движется) . Так, хотя масса покоя одного электрона (масса не движущегося электрона) очень мала – около 10 -27 г, но даже один электрон – это вещество.

Вещество бывает в трех агрегатных состояниях – газообразном, жидком и твердом. Есть еще одно состояние вещества – плазма (например, плазма есть в грозовой и шаровой молнии), но в школьном курсе химию плазмы почти не рассматривают.

Вещества могут быть чистыми, очень чистыми (нужными, например, для создания волоконной оптики), могут содержать заметные количества примесей, могут быть смесями.

Все вещества состоят из мельчайших частиц – атомов. Вещества, состоящие из атомов одного вида (из атомов одного элемента), называют простыми (например, древесный уголь, кислород, азот, серебро и др.). Вещества, которые содержат связанные между собой атомы разных элементов, называют сложными.

Если в веществе (например, в воздухе) присутствуют два или большее число простых веществ, и их атомы не связаны между собой, то его называют не сложным, а смесью простых веществ. Число простых веществ сравнительно невелико (около пятисот), а число сложных веществ огромно. К настоящему времени известны десятки миллионов разных сложных веществ.

Химические превращения

Вещества способны вступать между собой во взаимодействие, причем возникают новые вещества. Такие превращения называют химическими . Например, простое вещество уголь взаимодействует (химики говорят – реагирует) с другим простым веществом – кислородом, в результате образуется сложное вещество – углекислый газ, в котором атомы углерода и кислорода связаны между собой. Такие превращения одних веществ в другие называют химическими. Химические превращения – это химические реакции. Так, при нагревании сахара на воздухе сложное сладкое вещество – сахароза (из которого состоит сахар) – превращается в простое вещество – уголь и сложное вещество – воду.

Химия изучает превращения одних веществ в другие. Задача химии – выяснить, с какими именно веществами может при данных условиях взаимодействовать (реагировать) то или иное вещество, что при этом образуется. Кроме того, важно выяснить, при каких именно условиях может протекать то или иное превращение и можно получить нужное вещество.

Физические свойства веществ

Каждое вещество характеризуется совокупностью физических и химических свойств. Физические свойства – это свойства, которые можно охарактеризовать с помощью физических приборов . Например, с помощью термометра можно определить температуру плавления и кипения воды. Физическими методами можно охарактеризовать способность вещества проводить электрический ток, определить плотность вещества, его твердость и т.д. При физических процессах вещества остаются неизменными по составу.

Физические свойства веществ подразделяют на счислимые (те, которые можно охарактеризовать с помощью тех или иных физических приборов числом, например, указанием плотности, температур плавления и кипения, растворимости в воде и др.) и несчислимые (те, которые охарактеризовать числом нельзя или очень трудно – такие, как цвет, запах, вкус и др.).

Химические свойства веществ

Химические свойства вещества – это совокупность сведений о том, с какими другими веществами и при каких условиях вступает в химические взаимодействия данное вещество . Важнейшая задача химии – выявление химических свойств веществ.

В химических превращениях участвуют мельчайшие частицы веществ – атомы. При химических превращениях из одних веществ образуются другие вещества, и исходные вещества исчезают, а вместо них образуются новые вещества (продукты реакции). А атомы при всех химических превращениях сохраняются . Происходит их перегруппировка, при химических превращениях старые связи между атомами разрушаются и возникают новые связи.

Химический элемент

Число различных веществ огромно (и у каждого из них своя совокупность физических и химических свойств). Атомов, отличающихся друг от друга по важнейшим характеристикам, в окружающем нас материальном мире сравнительно невелико – около ста. Каждому виду атомов отвечает свой химический элемент. Химический элемент – это совокупность атомов с одинаковыми или близкими характеристиками . В природе встречается около 90 различных химических элементов. К настоящему времени физики научились создавать новые, отсутствующие на Земле виды атомов. Такие атомы (и, соответственно, такие химические элементы) называют искусственными (по-английски – man-made elements). Искусственно полученных элементов к настоящему времени синтезировано более двух десятков.

Каждый элемент имеет латинское название и одно- или двух-буквенный символ. В русскоязычной химической литературе нет четких правил произношения символов химических элементов. Одни произносят так: называют элемент по-русски (символы натрия, магния и др.), другие – по латинским буквам (символы углерода, фосфора, серы), третьи – как звучит название элемента по-латыни (железо, серебро, золото, ртуть). Символ элемента водорода Н у нас принято произносить так, как эту букву произносят по-французски.

Сравнение важнейших характеристик химических элементов и простых веществ приведено в таблице ниже. Одному элементу может отвечать несколько простых веществ (явление аллотропии: углерод, кислород и др.), а может – и одно (аргон и др. инертные газы).

8.1. Что такое химическая номенклатура

Химическая номенклатура складывалась постепенно, в течение нескольких столетий. По мере накопления химических знаний она неоднократно менялась. Уточняется и развивается она и сейчас, что связано не только с несовершенством некоторых номенклатурных правил, но еще и с тем, что ученые постоянно открывают новые и новые соединения, назвать которые (а бывает, что даже и составить формулы), пользуясь существующими правилами иногда оказывается невозможно. Номенклатурные правила, принятые в настоящее время научным сообществом всего мира, содержатся в многотомном издании: " Номенклатурные правила ИЮПАК по химии" , число томов в котором непрерывно возрастает.
С типами химических формул, а также с некоторыми правилами их составления вы уже знакомы. А какие же бывают названия химических веществ?
Пользуясь номенклатурными правилами, можно составить систематическое название вещества.

Для многих веществ кроме систематических используются и традиционные, так называемые тривиальные названия. При своем возникновении эти названия отражали определенные свойства веществ, способы получения или содержали название того, из чего данное вещество было выделено. Сравните систематические и тривиальные названия веществ, приведенных в таблице 25.

К тривиальным относятся и все названия минералов (природных веществ, составляющих горные породы), например: кварц (SiO 2); каменная соль, или галит (NaCl); цинковая обманка, или сфалерит (ZnS); магнитный железняк, или магнетит (Fe 3 O 4); пиролюзит (MnO 2); плавиковый шпат, или флюорит (CaF 2) и многие другие.

Таблица 25. Систематические и тривиальные названия некоторых веществ

Систематическое название

Тривиальное название

NaCl Хлорид натрия Поваренная соль
Na 2 CO 3 Карбонат натрия Сода, кальцинированная сода
NaHCO 3 Гидрокарбонат натрия Питьевая сода
CaO Оксид кальция Негашеная известь
Ca(OH) 2 Гидроксид кальция Гашеная известь
NaOH Гидроксид натрия Едкий натр, каустическая сода, каустик
KOH Гидроксид калия Едкое кали
K 2 CO 3 Карбонат калия Поташ
CO 2 Диоксид углерода Углекислый газ, углекислота
CO Монооксид углерода Угарный газ
NH 4 NO 3 Нитрат аммония Аммиачная селитра
KNO 3 Нитрат калия Калийная селитра
KClO 3 Хлорат калия Бертолетова соль
MgO Оксид магния Жженая магнезия

Для некоторых наиболее известных или широко распространенных веществ употребляются только тривиальные названия, например: вода, аммиак, метан, алмаз, графит и другие. В этом случае такие тривиальные названия иногда называют специальными .
Как составляются названия веществ, относящихся к разным классам, вы узнаете из следующих параграфов.

Карбонат натрия Na 2 CO 3 . Техническое (тривиальное) название – кальцинированная (то есть прокаленная) сода, или просто " сода" . Белое вещество, термически очень устойчивое (плавится без разложения), хорошо растворяется в воде, частично с ней реагируя, при этом в растворе создается щелочная среда. Карбонат натрия – ионное соединение со сложным анионом, атомы которого связаны между собой ковалентными связями. Сода ранее широко применялась в быту для стирки белья, но сейчас полностью вытеснена современными стиральными порошками. Получают карбонат натрия по довольно сложной технологии из хлорида натрия, а используют, в основном, в производстве стекла. Карбонат калия К 2 СО 3 . Техническое (тривиальное) название – поташ. По строению, свойствам и применению карбонат калия очень похож на карбонат натрия. Ранее его получали из золы растений, да и сама зола использовалась при стирке. Сейчас большая часть карбоната калия получается в качестве побочного продукта при производстве глинозема (Al 2 O 3), используемого для производства алюминия.

Из-за гигроскопичности поташ применяют в качестве осушающего средства. Используют его и в производстве стекла, пигментов, жидкого мыла. Кроме этого, карбонат калия – удобный реактив для получения других соединений калия.

ХИМИЧЕСКАЯ НОМЕНКЛАТУРА, СИСТЕМАТИЧЕСКОЕ НАЗВАНИЕ, ТРИВИАЛЬНОЕ НАЗВАНИЕ, СПЕЦИАЛЬНОЕ НАЗВАНИЕ.
1.Выпишите из предыдущих глав учебника десять тривиальных названий любых соединений (отсутствующих в таблице), запишите формулы этих веществ и дайте их систематические названия.
2.О чем говорят тривиальные названия " поваренная соль" , " кальцинированная сода" , " угарный газ" , " жженая магнезия" ?

8.2. Названия и формулы простых веществ

Названия большинства простых веществ совпадают с названиями соответствующих элементов. Только все аллотропные модификации углерода имеют свои особые названия: алмаз, графит, карбин и другие. Кроме этого имеет свое особое название одна из аллотропных модификаций кислорода – озон.
Простейшая формула простого немолекулярного вещества состоит только из символа соответствующего элемента, например: Na – натрий, Fe – железо, Si – кремний.
Аллотропные модификации обозначают, используя буквенные индексы или буквы греческого алфавита:

C (а) – алмаз; - Sn – серое олово;
С (гр) – графит; - Sn – белое олово.

В молекулярных формулах молекулярных простых веществ индекс, как вы знаете, показывает число атомов в молекуле вещества:
H 2 – водород; O 2 – кислород; Cl 2 – хлор; O 3 – озон.

В соответствии с номенклатурными правилами систематическое название такого вещества должно содержать приставку, показывающую число атомов в молекуле:
H 2 – диводород;
O 3 – трикислород;
P 4 – тетрафосфор;
S 8 – октасера и т. д., но в настоящее время это правило еще не стало общеупотребительным.

Таблица 26.Числовые приставки

Множитель Приставка Множитель Приставка Множитель Приставка
моно пента нона
ди гекса дека
три гепта ундека
тетра окта додека
Озон O 3 – светло-синий газ с характерным запахом, в жидком состоянии – темно-голубой, в твердом – темно-фиолетовый. Это вторая аллотропная модификация кислорода. Озон значительно лучше растворим в воде, чем кислород. О 3 малоустойчив и даже при комнатной температуре медленно превращается в кислород. Очень реакционноспособен, разрушает органические вещества, реагирует со многими металлами, в том числе с золотом и платиной. Почувствовать запах озона можно во время грозы, так как в природе озон образуется в результате воздействия молний и ультрафиолетового излучения на атмосферный кислород.Над Землей существует озоновый слой, расположенный на высоте около 40 км, который задерживает основную часть губительного для всего живого ультрафиолетового излучения Солнца. Озон обладает отбеливающими и дезинфицирующими свойствами. В некоторых странах он используется для дезинфекции воды. В медицинских учреждениях для дезинфекции помещений используют озон, получаемый в специальных приборах – озонаторах.

8.3. Формулы и названия бинарных веществ

В соответствии с общим правилом в формуле бинарного вещества на первое место ставится символ элемента с меньшей электроотрицательностью атомов, а на второе – с большей, например: NaF, BaCl 2 , CO 2 , OF 2 (а не FNa, Cl 2 Ba, O 2 C или F 2 O!).
Так как значения электроотрицательности для атомов разных элементов постоянно уточняются, обычно пользуются двумя практическими правилами:
1. Если бинарное соединения представляет собой соединение элемента, образующего металл, с элементом, образующим неметалл, то на первое место (слева) всегда ставится символ элемента, образующего металл.
2. Если оба элемента, входящие в состав соединения – элементы, образующие неметаллы, то их символы располагают в следующей последовательности:

B, Si, C, Sb, As, P, N, H, Te, Se, S, At, I, Br, Cl, O, F.

Примечание: следует помнить, что место азота в этом практическом ряду не соответствует его электроотрицательности; в соответствии с общим правилом его следовало бы поместить между хлором и кислородом.

Примеры: Al 2 O 3 , FeO, Na 3 P, PbCl 2 , Cr 2 S 3 , UO 2 (по первому правилу);
BF 3 , CCl 4 , As 2 S 3 , NH 3 , SO 3 , I 2 O 5 , OF 2 (по второму правилу).
Систематическое название бинарного соединения может быть дано двумя способами. Например, СО 2 можно назвать диоксидом углерода – это название вам уже известно – и оксидом углерода(IV). Во втором названии в скобках указывается число Штока (степень окисления) углерода. Это делается для того, чтобы отличить это соединение от СО – оксида углерода(II).
Можно использовать и тот, и другой тип названия в зависимости от того, какой в данном случае более удобен.

Примеры (выделены более удобные названия):

MnO монооксид марганца оксид марганца(II)
Mn 2 O 3 триоксид димарганца оксид марганца (III)
MnO 2 диоксид марганца оксид марганца(IV)
Mn 2 O 7 гептаоксид димарганца оксид марганца (VII)

Другие примеры:

Если атомы элемента, стоящего в формуле вещества на первом месте, проявляют только одну положительную степень окисления, то ни числовые приставки, ни обозначение этой степени окисления в названии вещества обычно не используются, например:
Na 2 O – оксид натрия; KCl – хлорид калия;
Cs 2 S – сульфид цезия; BaCl 2 – хлорид бария;
BCl 3 – хлорид бора; HCl – хлорид водорода (хлороводород);
Al 2 O 3 – оксид алюминия; H 2 S – сульфид водорода (сероводород).

1.Составьте систематические названия веществ (для бинарных веществ – двумя способами):
а) O 2 , FeBr 2 , BF 3 , CuO, HI;
б) N 2 , FeCl 2 , Al 2 S 3 , CuI, H 2 Te;
в) I 2 , PCl 5 , MnBr 2 , BeH 2 , Cu 2 O.
2.Назовите двумя способами каждый из оксидов азота: N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 . Подчеркните более удобные названия.
3.Запишите формулы следующих веществ:
а) фторид натрия, сульфид бария, гидрид стронция, оксид лития;
б) фторид углерода(IV), сульфид меди(II), оксид фосфора(III), оксид фосфора(V);
в) диоксид кремния, пентаоксид дийода, триоксид дифосфора, дисульфид углерода;
г) селеноводород, бромоводород, йодоводород, теллуроводород;
д) метан, силан, аммиак, фосфин.
4.Сформулируйте правила составления формул бинарных веществ по положению элементов, входящих в состав этого вещества, в системе элементов.

8.4. Формулы и названия более сложных веществ

Как вы уже заметили, в формуле бинарного соединения на первом месте стоит символ катиона или атома с частичным положительным зарядом, а на втором – аниона или атома с частичным отрицательным зарядом. Точно также составляются формулы и более сложных веществ, но места атомов или простых ионов в них занимают группы атомов или сложные ионы.
В качестве примера рассмотрим соединение (NH 4) 2 CO 3 . В нем на первом месте стоит формула сложного катиона (NH 4 ), а на втором – формула сложного аниона (CO 3 2).
В формуле самого сложного иона на первое место ставится символ центрального атома, то есть атома, с которым связаны остальные атомы (или группы атомов) этого иона, а в названии указывается степень окисления центрального атома.

Примеры систематических названий:
Na 2 SO 4 тетраоксосульфат(VI) натрия(I),
K 2 SO 3 триоксосульфат(IV) калия(II),
CaCO 3 триоксокарбонат(IV) кальция(II),
(NH 4) 3 PO 4 тетраоксофосфат(V) аммония,
PH 4 Cl хлорид фосфония,
Mg(OH) 2 гидроксид магния(II).

Такие названия точно отражают состав соединения, но очень громоздки. Поэтому вместо них обычно используют сокращенные (полусистематические ) названия этих соединений:
Na 2 SO 4 сульфат натрия,
K 2 SO 3 сульфит калия,
CaCO 3 карбонат кальция,
(NH 4) 3 PO 4 фосфат аммония,
Mg(OH) 2 гидроксид магния.

Систематические названия кислот составляется так, как будто кислота – соль водорода:
H 2 SO 4 тетраоксосульфат(VI) водорода,
H 2 CO 3 триоксокарбонат(IV) водорода,
H 2 гексафторосиликат(IV) водорода.(О причинах применения квадратных скобок в формуле этого соединения вы узнаете позже)
Но для наиболее известных кислот номенклатурные правила допускают применение их тривиальных названий, которые вместе с названиями соответствующих анионов приведены в таблице 27.

Таблица 27. Названия некоторых кислот и их анионов

Название

Формула

Хлорид алюминия AlCl 3 . В твердом состоянии – немолекулярное вещество с простейшей формулой AlCl 3 , а в жидком и газообразном – молекулярное вещество Al 2 Cl 6 . Связи в безводном хлориде алюминия ковалентные, в твердом виде он имеет каркасное строение. Это белое легкоплавкое сильно летучее соединение. Хлорид алюминия в воде хорошо растворим, " дымит" во влажном воздухе. Из водных растворов безводный AlCl 3 выделен быть не может. Используется хлорид алюминия как катализатор при синтезе органических веществ.

Азотная кислота HNO 3 Чистая безводная азотная кислота – бесцветная жидкость, на свету она разлагается с образованием бурого диоксида азота, который окрашивает кислоту в желтоватый цвет, интенсивность которого зависит от концентрации диоксида. При неосторожном обращении с кислотой и ее попадании на кожу образуется ожог, также имеющий характерный желтый цвет. С водой азотная кислота смешивается в любых отношениях. Принято различать концентрированную, разбавленную и очень разбавленную кислоты. Смесь азотной и соляной кислот называется " царской водкой" – эта смесь так активна, что способна реагировать с золотом. Да и сама по себе азотная кислота – один из самых разрушительных реагентов. В связи с ее высокой активностью, азотная кислота не встречается в природе в свободном состоянии, хотя небольшие ее количества образуются в атмосфере. Получают азотную кислоту в больших количествах из аммиака по довольно сложной технологии, а расходуют на производство минеральных удобрений. кроме того, это вещество используется практически во всех отраслях химической промышленности.

ПОЛУСИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ КИСЛОТ И СОЛЕЙ.
Назовите следующие вещества:
а) Fe(NO 3) 3 , H 2 SeO 4 , Cr(OH) 3 , (NH 4) 3 PO 4 ;
б) Cr 2 (SO 4) 3 , CrSO 4 , CrCl 3 , CrO 3 , Cr 2 S 3 ;
в) Na 2 SO 4 , Na 2 SO 3 , Na 2 S;
г) KNO 3 , KNO 2 , K 3 N;
д) HBr, H 3 BO 3 , (H 3 O) 2 SO 4 , (H 3 O) 3 PO 4 ;
е) KMnO 4 , K 2 S 2 O 7 , K 3 , K 3 .
2.Составьте формулы следующих веществ:
а) карбонат магния, нитрат свинца(II), нитрит лития;
б) гидроксид хрома(III), бромид алюминия, сульфид железа(II);
в) нитрат серебра, бромид фосфора(V), фосфат кальция.

Химические вещества по определению представляют собой некоторую опасность, если неправильно их использовать и не соблюдать меры предосторожности. Чтобы точно знать, что можно ожидать от того или иного вещества, существуют классификации химических веществ по степени опасности.

Согласно установленным требованиям ГОСТ 12.1.007-76 химические вещества разделены на четыре класса по уровню токсичности и их воздействию на живые организмы, в частности на людей и животных. Класс опасности зависит от таких факторов, как ПДК, КВИО, средняя смертельная доза при нанесении на кожу или попадании в желудок. Еще один документ, регулирующий уровень опасности химических веществ, – это СанПиН 2.1.4. 1074-01.

Классификация химически опасных веществ

1-й класс опасности

1-й класс опасности. Это чрезвычайно опасные вещества , ПДК которых составляет менее 0,1. Доза при попадании в желудок для достижения летального исхода составляет менее 15 мг/кг какого-либо вещества, относящегося к этому классу токсичности. Для летального исхода при попадании на кожу достаточно всего 100 или менее миллиграммов такого вещества на килограмм. Вышеуказанные дозы в ходе экспериментов привели к гибели более половины подопытных животных. В таблицах обозначаются как ЛД 50 (пероральная) и ЛД 50 (кожная).

Следующий, самый важный, показатель токсичности и опасности вещества – это его ПДК, или предельно допустимая концентрация. ПДК чрезвычайно опасных веществ в атмосфере составляет около 0,1 миллиграмма на кубический метр. Коэффициент возможности ингаляционного отравления более 300, зона острого действия – 6,0, зона хронического действия – 10, зона биологического действия – более 1000.

К чрезвычайно опасным веществам принято относить никотин, цианид калия, и другие. Превышение вышеуказанных показателей приводит к необратимым нарушениям в экологической системе и к летальному исходу живых организмов.

2-й класс опасности

Это высокоопасные вещества , ЛД 50 (пероральная) таких веществ составляет 15–150 мг/кг в зависимости от характера вещества, а ЛД 50 (кожная) – 100-500 мг/кг. Эти вещества несут большую опасность для человека и для животных из-за своего разрушительного действия.

Несут они большую опасность и для , так как ПДК таких веществ составляет до 1,0 миллиграмма, КВИО – от 30 до 300, ЗОД – 6, 18, ЗХД – 5–10, ЗБД – 100–100.

К высокоопасным веществам относятся мышьяк, хлороформ, свинец, литий и так далее. Нередко эти вещества используются в качестве ядов или транквилизаторов. Большая часть из них находится в очень ограниченном доступе.

3-й класс опасности

Умеренно опасные вещества . Летальная доза таких веществ при попадании на кожу составляет 501-2500 мг/кг, а при попадании в желудок – 151–5000 мг/кг. Предельно допустимая концентрация в атмосфере до 10 мг/м3, коэффициент возникновения ингаляционного отравления при температуре 20 градусов по шкале Цельсия от 3 до 30. Такой показатель был установлен в ходе экспериментов над лабораторными мышами.

Зона острого действия составляет 18–54, зона хронического действия – 5–2,5, биологического действия – от 10 до 100.

В список умеренно опасных веществ входят бензин, алюминиевая кислота, соединения алюминия, марганца и так далее. Несмотря на относительно низкие показатели, относиться к таким веществам следует с осторожностью. Эти вещества активно используются не только в производстве, но и в повседневной жизни, и именно поэтому нужно обращать на них особое внимание.

4-й класс опасности

Малоопасные вещества . Эти химические вещества представляют собой наименьшую угрозу из-за своих невысоких показателей опасности и токсичности. ЛД 50 (пероральная) таких веществ более 5000 мг/кг, кожная – более 2500 мг/кг, ПДК – более 10, КВИО – менее 0,3, зона острого действия – более 54, зона хронического действия – менее 2,5, а зона биологического действия – менее 10.

Эти вещества знает каждый, так как они представляют по большей части одну из составляющих нашей жизни. В список малоопасных веществ входит популярное горючее керосин, аммиак, который можно найти практически в любой аптечке, алюминий, соединения железа и этанол. Очень часто эти вещества используются для проведения опытов на уроках химии.

Перечень вредных веществ по характеру воздействия на организм

Химические вещества и элементы могут различаться не только по токсичности, но и по характеру своего воздействия на организм. И чтобы иметь полное представление о каком-либо веществе или соединении, нужно учитывать данные обеих классификаций, в зависимости от класса, каждому из веществ присвоен свой цвет, согласно таблице.

Вам будет полезно знать, как осуществляется в соответствии СанПиН 2.1.7.2790-10.

В каких случаях применяются повышающие надбавки читайте в новых нормативов расхода ГСМ.

Последовательность занесения объектов в «Государственный реестр объектов размещения отходов» читайте по ссылке.

Итак, воздействие химических веществ может носить следующий характер:

  1. Характер раздражающего действия. При попадании на кожу могут появиться некоторые покраснения. К таким веществам относят фосфор, хлор, фтор, оксиды водорода и т.д.
  2. Характер прижигающего действия. При попадании на кожу или внутрь организма могут появиться ожоги разной степени тяжести. Это такие вещества, как соляная кислота и аммиак.
  3. Удушающие вещества. Большое содержание таких веществ в воздухе может привести к асфиксии и впоследствии к летальному исходу. Таким действием обладают фосген и хлорпикрин.
  4. Токсичные химические вещества. Это вещества, которые могут пагубно влиять на организм человека, вызывать разной степени отравления. Водород мышьяковистый, сероводород, окись этилена, синильная кислота – вот те вещества, которые представляют токсичную опасность для живых организмов.
  5. Наркотические вещества. Такие вещества вызывают привыкание, попадая внутрь организма, разрушают его. Отказаться от приобретенной привычки или очень сложно, или невозможно. Такие вещества называются наркотиками, и обычному человеку их следует избегать. Пользу такие вещества могут принести только в медицине, но и там существует ряд требований и ограничений. К наркотическим веществам относятся никотин, метил хлористый, метил бромистый, формальдегид и так далее.

Различие между веществом и полем

Поле, в отличие от веществ, характеризуется непрерывностью, известны электромагнитное и гравитационное поля, поле ядерных сил, волновые поля различных элементарных частиц.

Современное естествознание нивелирует различие между веществом и полем, считая, что и вещества, и поля состоят из различных частиц, обладающих корпускулярно-волновой (двойственной) природой. Выявление тесной взаимосвязи между полем и веществом привело к углублению представлений о единстве всех форм и структуры материального мира.

Однородное вещество характеризуется плотностью - отношением массы вещества к его объёму:

где ρ - плотность вещества, m - масса вещества, V - объём вещества.

Физические поля такой плотностью не обладают.

Свойства вещества

Каждому веществу присущ набор специфических свойств - объективных характеристик, которые определяют индивидуальность конкретного вещества и тем самым позволяют отличить его от всех других веществ. К наиболее характерным физико-химическим свойствам относятся константы - плотность, температура плавления , температура кипения , термодинамические характеристики, параметры кристаллической структуры. К основным характеристикам вещества принадлежат его химические свойства.

Разнообразие веществ

Число веществ в принципе неограниченно велико; к известному числу веществ всё время добавляются новые вещества, как открываемые в природе, так и синтезируемые искусственно.

Индивидуальные вещества и смеси

Агрегатные состояния

Все вещества в принципе могут существовать в трёх агрегатных состояниях - твёрдом, жидком и газообразном. Так, лёд, жидкая вода и водяной пар - это твёрдое, жидкое и газообразное состояния одного и того же вещества - воды H 2 O. Твёрдая, жидкая и газообразная формы не являются индивидуальными характеристиками веществ, а соответствуют лишь различным, зависящим от внешних физических условий состояниям существования веществ. Поэтому нельзя приписывать воде только признак жидкости, кислороду - признак газа, а хлориду натрия - признак твёрдого состояния. Каждое из этих (и всех других веществ) при изменении условий может перейти в любое другое из трёх агрегатных состояний.

При переходе от идеальных моделей твёрдого, жидкого и газообразного состояний к реальным состояниям вещества обнаруживается несколько пограничных промежуточных типов, общеизвестными из которых являются аморфное (стеклообразное) состояние, состояние жидкого кристалла и высокоэластичное (полимерное) состояние. В связи с этим часто пользуются более широким понятием «фаза».

В физике рассматривается четвёртое агрегатное состояние вещества - плазма , частично или полностью ионизированное состояние, в котором плотность положительных и отрицательных зарядов одинакова (плазма электронейтральна).

Кристаллы

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов). Кристаллическая структура , будучи индивидуальной для каждого вещества, относится к основным физико-химическим свойствам. Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку . Если кристаллические решётки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например методами рентгеновского структурного анализа.

Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны ромбическая и моноклинная сера , графит и алмаз , которые являются гексагональной и кубической модификациями углерода , среди сложных веществ - кварц , тридимит и кристобалит представляют собой различные модификации диоксида кремния.

Органические вещества

Литература

  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989

См. также