Из чего состоит ток. Как течет ток. Закономерности параллельного соединения

Темы кодификатора ЕГЭ : постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации - энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь - основаны на использовании электрического тока.

Электрический ток - это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно - ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это - пример тока в металлах.

Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы - к положительному.
Это - пример прохождения тока через раствор электролита.

Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд - молния.
Это - пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости .

Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов - есть, перенос заряда в пространстве - присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным .

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника - не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные - наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1 ; положительная клемма источника тока изображена длинной чертой, отрицательная клемма - короткой).

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь - придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока . Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока . Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня - получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока . При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным , если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока . В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

(1)

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока :

(2)

где - сила тока, - площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2) , плотность тока измеряется в А/м2.

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока . Это - скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов . Это - средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа .

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

(3)

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

(4)

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

(5)

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

Положим мм . Из формулы (5) получим:

М/с.

Это порядка одной десятой миллиметра в секунду.

Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть - постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода - электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи - для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ - источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника - это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи - как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего - химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника - так называемую ЭДС - мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле - это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где - напряжение на концах проводника, - напряжённость стационарного поля в проводнике, - длина проводника.

Электрический ток является одним из основных процессов, протекающих в абсолютно любой электронной схеме (в электрической цепи). Изучение данного процесса позволит в дальнейшем гораздо проще понимать остальные процессы, присущие электрическим цепям.

Для более глубокого понимания сущности электрического тока, рекомендую прежде ознакомиться с природой возникновения . Ранее мы узнали, что при натирании о шерсть пластмассовой палочки за счет сил трения некоторое количество электронов покидают поверхностный слой стержня, который становится положительно заряженный. При натирании стеклянной палочки о шелк, она заряжается отрицательно, поскольку электроны покидают атомы из верхних слоев шелка и оседают на стекле.


Таким образом, мы имеем одну палочку с избытком электронов, поэтому говорят, что она отрицательно заряжена, а вторую палочку – с нехваткой электронов, поэтому в ней преобладает положительный заряд.

Поскольку все явле ния в природе стремится к равновесию, то соединив проводником обе разноименно заряженных стержня, свободные электроны мгновенно перейдут из стеклянного стержня к пластмассовому, из зоны их избытка в зону нехватки. В результате оба стержня станут нейтрально заряженными и лишены свободных электронов, которые могли бы легко перемещаться. Процесс перемещения электронов по проводнику между палочками и есть электрический ток .

Электрический ток могеж выполнять полезную работу, например, засветить светодиод, расп оложенные на его пути.

Полезную работу зарядов можно представить на примере автобуса. Если из города А в город Б проследовал автобус без пассажиров, то автобус не выполнил никакой полезной работы и напрасно израсходовал топливо. Автобус, перевезший пассажиров, — выполнил полезную работу. Аналогично работает и электрический ток, поэтому на его пути располагают нагрузку, на которой происходит выполнение полезной работы.

Соединенный проводами с натертыми палочками светодиод светится очень короткий промежуток времени, поскольку свободные отрицательные заряды мгновенно переместятся из области их избытка в область нехватки и наступит равновесие.

Генератор

Для того чтобы светодиод мог светиться продолжительное время необходимо поддерживать электрический ток путем пополнения зарядов на палочках, то есть постоянно их натирать о шерсть и шелк соответственно. Но такой способ трудно реализуем на практике и малоэффективен. Поэтому применяется гораздо практичней способ поддержания необходимого количества носителей энергии.

Устройство, которое постоянно создает или генерирует заряды разных знаков, называют генератором или обобщенно – источником питания. Простейшим генератором является батарейка, которую более правильно называть гальванический элемент. В отличие от палочек, в которых заряды образуются за счет сил трения, в гальваническом элементе разноименные заряды образуются в результате протекания химических реакций.

Электрический ток и условия его протекания

Теперь мы можем сделать первые важнейшие предварительные выводы и обозначить условия протекания электрического тока.

  1. Первое. Для образования электрического тока путь движения зарядов должен быть замкнут.
  2. Второе. Для поддержания электрического тока необходимо, чтобы вначале пути пополнялся запас зарядов, а в конце путь они отбирались, освобождая места для вновь пришедших зарядов.
  3. Третье. Чтобы заряды выполняли полезную работу, следует на их пути расположить, например нить лампы накаливания, светодиод или обмотку двигателя, которые в общем случае принято называть нагрузкой или потребителем.

В общем, простейшая электрическая цепь состоит из генератора, нагрузки и проводов, соединяющих генератор с нагрузкой.

Электродвижущая сила ЭДС

Главной задачей любого источника питания является образование и поддерживание на выводах, называемых электродами, постоянное значение разноименных зарядов. Чем большее число зарядов, тем сильнее они стремятся притянуться друг к другу и поэтому интенсивней перемещаются по электрической цепи. А сила, которая заставляет двигать электроны по цепи, называется электродвижущая сила или сокращенно ЭДС . Электродвижущая сила измеряется в вольтах [В] . ЭДС новой (не разряженной) батарейки чуть больше 1,5 В, а кроны – чуть больше 9 В.

Количественно оценить значение электрического тока наглядно на примере водопроводной трубы. Мысленно представим воду в виде набора маленьких капелек, имеющих одинаковые размеры. Теперь возьмем и разрежем в каком-либо месте трубу и установим счетчик капелек воды. Далее откроем кран и засечем время, например одну минуту. После отсчета времени снимем показания счетчика. Допустим, за одну минуту счетчик зафиксировал 1 миллион капель. Отсюда мы делаем вывод, что расход воды составляет миллион капель за минуту. Если мы увеличим напор воды – заставим насос качать ее быстрее, — то возрастет давление воды, при этом капельки начнут перемещаться интенсивней и соответственно возрастет расход воды.

Сила электрического тока

Аналогичным образом определяется сила электрического тока. Если мысленно разрезать провод, соединяющий генератор с нагрузкой и установить счетчик, то мы получим расход электронов за единицу времени, — это есть сила тока.

С ростом электродвижущей силы генератора электроны интенсивнее проходят по цепи, а сила тока возрастает.

Поскольку известен заряд электрона и их суммарное количество, прошедшее через поперечное сечение проводника за единицу времени, то можно количественно определить силу тока.

Заряд одного электрона имеет очень малую величину, а в электрическом токе их участвует огромное число. Поэтому за единицу электрического заряда приняли 628∙10 16 , то есть 6280000000000000000 зарядов электрона. Такая величина электрического заряда получила название кулон , сокращенно [Кл] .

Единица измерения силы тока называется ампер [А] . Сила тока равна одному амперу, когда через поперечное сечение проводника за одну секунду проходит суммарный электрический заряд, величиной в один кулон.

1 А = 1 Кл/1 сек

I = Q/t

Если за одну секунду по проводнику проходит в два раза больше электронов, то I равна 2 ампера.

В проводнике, выполненном из металла, например меди или алюминия, образуются множество свободных эле-нов. Они легко покидают атомы кристаллической решетки металла и свободно перемещаются в межатомном пространстве. Однако гуляют они не долго, поскольку мгновенно притягивается другим положительно заряженным атомом, который потерял аналогичный эле-н. Поэтому по умолчанию ток через проводник не протекает. Кроме того свободные эл-ны не имеют упорядоченного движения, а хаотически перемещаются в межатомном пространстве. Такое, не имеющее четкого направления, перемещение называют Броуновским движением. С ростом температуры интенсивность движения увеличивается.

Чтобы протекал I нужно на одном конце проводника создать недостачу эл-нов, а на втором их избыток, то есть подключить разноименные полюса источника питания. Тогда электрическое поле источника питания создаст такую электродвижущую силу, которая заставит эл-ны в проводнике перемещаться в строго одном направлении. Поэтому электрическим током называют упорядоченное движение зарядов под действием внешнего электрического поля

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале - в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.

Электрический ток


Что называется электрическим током?

Упорядоченное (направленное) движение заряженных частиц называется электрическим током. Причем электрический ток, сила которого со временем не меняется, называется постоянным. Если же направление движения тока меняется и изменения. по величине и направлению повторяются в одной и той же последовательности, то такой ток называется переменным.

Что вызывает и поддерживает упорядоченное движение заряженных частиц?

Вызывает и поддерживает упорядоченное движение заряженных частиц электрическое поле. Имеет ли электрический ток определенное направление?
Имеет. За направление электрического тока принимают движение положительно заряженных частиц.

Можно ли непосредственно наблюдать движение заряженных частиц в проводнике?

Нет. Но о наличии электрического тока можно судить по тем действиям и явлениям, которыми он сопровождается. Например, проводник, по которому движутся заряженные частицы, нагревается, а в пространстве, окружающем проводник, образуется магнитное поле и магнитная стрелка вблизи проводника с электрическим током поворачивается. Кроме того, ток, проходящий через газы, вызывает их свечение, а проходя через растворы солей, щелочей и кислот, разлагает их на соетавнйе части.

Чем определяется сила электрического тока?

Сила электрического тока определяется количеством электричества, проходящим через поперечное сечение проводника в единицу времени.
Чтобы определить силу тока в цепи, надо количество протекающего электричества разделить на время, за которое оно протекло.

Что принято за единицу силы тока?

За единицу силы тока принята сила неизменяющегося тока, который, проходя по двум параллельны прямолинейным проводникам бесконечной длины ни тожно малого сечения, расположенным на рассто нии 1 м один от другого в вакууме, вызвал бы межд этими проводниками силу, равную 2 Ньютона н каждый метр. Эту единицу назвали Ампером в чест французского ученого Ампера.

Что принято за единицу количества электричества?

За единицу количества электричества принят Кулон (Ку), который проходит в одну секунду при силе тока в 1 Ампер (А).

Какими приборами измеряют силу электрического тока?

Силу электрического тока измеряют приборами, называемыми амперметрами. Шкалу амперметра градуируют в амперах и долях ампера по показаниям точных образцовых приборов. Силу тока отсчитывают по показаниям стрелки, которая перемещается вдоль шкалы от нулевого деления. Амперметр в электрическую цепь включают последовательно, с помощью двух клемм или зажимов, имеющихся на приборе. Что такое напряжение электрического тока?
Напряжение электрического тока есть разность потенциалов между двумя точками электрического поля. Оно равно работе, совершаемой-силами электрического поля при перемещении положительного заряда, равного единице, из одной точки поля в другую.

Основной единицей измерения напряжения является Вольт (В).

Каким прибором измеряют напряжение электрического тока?

Напряжение электрического тока измеряют прибо; ром, который называется вольтметром. В цепь электрического тока вольтметр включают параллельно. Сформулируйте закон Ома на участке цепи.

Что такое сопротивление проводника?

Сопротивление проводника есть физическая величина, характеризующая свойства проводника. Единицей сопротивления является Ом. Причем сопротивление в 1 Ом имеет провод, в котором устанавливается ток 1 А при напряжении на его концах 1 В.

Зависит ли сопротивление в проводниках от величины протекающего по ним электрического тока?

Сопротивление однородного металлического проводника определенной длины и сечения не зависит от величины протекающего по нему тока.

От чего зависит сопротивление в проводниках электрического тока?

Сопротивление в проводниках электрического тока зависит от длины проводника, площади его поперечного сечения и рода материала проводника (удельного сопротивления материала).

Причем сопротивление прямо пропорционально длине проводника, обратно пропорционально площади поперечного сечения и зависит, как было сказано выше, от материала проводника.

Зависит ли сопротивление в проводниках от температуры?

Да, зависит. Повышение температуры металлического проводника вызывает увеличение скорости теплового движения частиц. Это приводит к увеличению числа столкновений свободных электронов и, следовательно, к уменьшению времени свободного пробега, вследствие чего уменьшается удельная проводимость и увеличивается удельное сопротивление материала.

Температурный коэффициент сопротивления чистых металлов равен приблизительно 0,004 °С, что означает увеличение их сопротивления на 4% при повышении температуры на 10 °С.

При повышении температуры в электролита угле время свободного пробега тоже уменьшается, при этом увеличивается концентрация носителей з дов, вследствие чего удельное сопротивление их повышении температуры уменьшается.

Сформулируйте закон Ома для замкнутой цепи.

Сила тока в замкнутой цепи равна отноше электродвижущей силы цепи к ее полному сопроти нию.

Эта формула показывает, что сила тока зависит трех величин: электродвижущей силы Е, внешнег сопротивления R и внутреннего сопротивления г Внутреннее сопротивление не оказывает заметног влияния на силу тока, если оно мало по сравнению внешним сопротивлением. При этом напряже ние на зажимах источника тока приблизительно равн электродвижущей силе (ЭДС).

Что представляет собой электродвижущая сила (ЭДС)?

Электродвижущая сила представляет собой отношение работы сторонних сил по перемещению заряда вдоль цепи к заряду. Как и разность потенциалов, электродвижущую силу измеряют в вольтах.

Какие силы называются сторонними силами?

Любые силы, действующие на электрически заряженные частицы, за исключением потенциальных сил электростатического происхождения (т. е. кулонов- ских), называются сторонними силами. Именно за счет работы этих сил заряженные частицы приобретают энергию и отдают ее затем при движении в проводниках электрической цепи.

Сторонние силы приводят в движение заряженные частицы внутри источника тока, генератора, аккумулятора и т. д.

В результате на клеммах источника тока появляются заряды противоположного знака, а между клеммами-определенная разность потенциалов. Далее при замыкании цепи начинает действовать образование поверхностных зарядов, создающих электрическое поле по всей цепи, которое появляется в результате того, что при замыкании цепи почти сразу же на всей поверхности проводника возникает поверхностный заряд. Внутри источника заряды движутся под действием сторонних сил против сил электростатического поля (положительные от минуса, к плюсу), а по всей остальной цепи их приводит в движение электрическое поле.

Рис. 1. Электрическая цепь: 1- источник, электроэнергии (аккумулятор); 2 - амперметр; 3 - преемник энергии (лай па накаливания); 4 - электрические провода; 5 - однополюсные руСидьник; 6 - плавкие предохранители

К атегория: - Крановщикам и стропальщикам

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале - в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.