Непрерывные и дискретные математические модели. Понятие модели и моделирования Детерминированные модели систем

6. Непрерывные и дискретные модели.

Будем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через В.

Пусть М=М(X,Y, Z ), где X – множество входов, Y – выходов, Z – состояний системы. Схематически можно это изобразить: X Z Y .

Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта – вид математического выражения, которое связывает его входные и выходные переменные (например: у= au + bv ). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b ).

Непрерывность и дискретность . Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов.

Свойство непрерывности и дискретности выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z , Т, Х, Y ведет к модели, называемой дискретной, а их непрерывность - к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего – замена непрерывной математической функции на набор ее значений в фиксированных точках.

модель материальный скачкообразный дискретный

Будем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через В.

Пусть М=М(X,Y,Z), где X - множество входов, Y - выходов, Z - состояний системы. Схематически можно это изобразить: X Z Y.

Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта - вид математического выражения, которое связывает его входные и выходные переменные (например: у=au+bv). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b).

Непрерывность и дискретность.

Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов.

Свойство непрерывности и дискретности выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z, Т, Х, Y ведет к модели, называемой дискретной, а их непрерывность -- к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего - замена непрерывной математической функции на набор ее значений в фиксированных точках.

Непрерывные математические модели

Для реализации ММ, представляемых ДУЧП или системами ОДУ, используются численные методы непрерывной математики, поэтому рассмотренные ММ называют непрерывными.

На рис. 1 показаны преобразования непрерывных ММ в процессе перехода от исходных формулировок задач к рабочим программам, представляющим собой последовательности элементарных арифметических и логических операций. Стрелками 1, 2 и 3 показаны переходы от описания структуры объектов на соответствующем иерархическом уровне к математической формулировке задачи. Дискретизация (4) и алгебраизация (5) ДУЧП по пространственным переменным осуществляются методами конечных разностей (МКР) или конечных элементов (МКЭ). Применение МКР или МКЭ к стационарным ДУЧП приводит к системе алгебраических уравнений (АУ), а к нестационарным ДУЧП--к системе ОДУ. Алгебраизация и дискретизация системы ОДУ по переменной t осуществляются методами численного интегрирования. Для нелинейных ОДУ (6) это преобразование приводит к системе нелинейных АУ, для линейных ОДУ (7) -- к системе линейных алгебраических уравнений (ЛАУ). Нелинейные АУ решаются итерационными методами. Стрелка 8 соответствует решению методом Ньютона, основанному на линеаризации уравнений, стрелка 9--методами Зейделя, Якоби, простой итерации и т. п. Решение системы ЛАУ сводится к последовательности элементарных операций (10) с помощью методов Гаусса или LU-разложения.

Рис. 1

Непрерывные ММ и используемые для их анализа методы вычислительной математики получили широкое распространение в САПР различных отраслей промышленности.

Создание методики автоматического формирования математических моделей систем позволило автоматизировать процедуры анализа и верификации широкого класса технических объектов. Инвариантный характер этой методики обусловил разработку на ее основе методов и алгоритмов, реализованных во многих ПМК проектирования электронных, механических, гидравлических, теплоэнергетических устройств и систем. Известны такие методы формирования ММ как узловой метод, контурный метод, метод переменных состояния.

Дискретные математические модели

Дискретной математической моделью называется модель, в которой выполнена дискретизация тех или иных переменных. Рассмотрим ММ, в которых дискретными являются зависимые переменные, характеризующие состояние моделируемого объекта.

Проектирование систем на функционально-логическом и системном уровнях основано на применении дискретных ММ. При моделировании в подсистемах функционально-логического проектирования принимаются те же допущения, что и при моделировании аналоговых систем на верхних уровнях. Кроме того, моделируемый объект представляется совокупностью взаимосвязанных логических элементов, состояния которых характеризуются переменными, принимающими значения в конечном множестве. В простейшем случае это множество {0, 1}. Непрерывное время t заменяется дискретной последовательностью моментов времени tк, при этом длительность такта. Следовательно, математической моделью объекта является конечный автомат (КА). Функционирование КА описывается системой логических уравнений КА

На системном уровне проектирования систем преимущественно распространены модели систем массового обслуживания (СМО). Для таких моделей характерно то, что в них отображаются объекты двух типов--заявки на обслуживание и обслуживающие аппараты (ОА). При проектировании ВС заявками являются решаемые задачи, а обслуживающими аппаратами--оборудование ВС. Заявка может находиться в состоянии «обслуживание» или «ожидание», а обслуживающий аппарат--в состоянии «свободен» или «занят». Состояние СМО характеризуется состояниями ее ОА и заявок. Смена состояний называется событием. Модели СМО используются для исследования процессов, происходящих в этой системе при подаче на входы потоков заявок. Эти процессы представляются последовательностями событий. По результатам исследования определяются наиболее важные выходные параметры системы: производительность, пропускная способность, вероятность и среднее время решения задач, коэффициенты загрузки оборудования.

Появление параллельных и конвейерных систем, необходимость моделировать процессы функционирования не только аппаратных, но и программных средств привело к появлению класса дискретных ММ, называемых сетями Петри. Сети Петри можно использовать для моделирования на функционально-логическом и системном уровнях проектирования широкого круга систем и сетей.

Сети Петри и СМО широко используются для описания функционирования производственных участков, линий и цехов, ориентированных на многономенклатурное производство изделий. Сети Петри -- эффективный инструмент разработки самих САПР. Эти сети могут служить моделями алгоритмов функционирования различных устройств дискретной автоматики.

Дискретные модели. Однако деление систем на непрерывные и дискретные во многом произвольно зависит от цели и глубины исследования. Часто непрерывные системы приводятся к дискретным при этом непрерывные параметры представляются как дискретные величины путем введения разного рода шкал балльных оценок и т. Дискретные системы изучаются с помощью аппарата теории алгоритмов и теории автоматов.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Дискретные модели относятся к системам, все элементы которых, а также связи между ними (т. е. обращающаяся в системе информация) имеют дискретный характер. Следовательно, все параметры такой системы дискретны.

Непрерывные модели. Противоположное понятие — непрерывная система. Однако деление систем на непрерывные и дискретные во многом произвольно, зависит от цели и глубины исследования. Часто непрерывные системы приводятся к дискретным (при этом непрерывные параметры представляются как дискретные величины путем введения разного рода шкал, балльных оценок и т. п.). Дискретные системы изучаются с помощью аппарата теории алгоритмов и теории автоматов. Их поведение может описываться с помощью разностных уравнений.

Другие похожие работы, которые могут вас заинтересовать.вшм>

16929. Дискретные математические модели в профессиональной подготовке студентов экономических специальностей ВУЗов 10.92 KB
Дискретные математические модели в профессиональной подготовке студентов экономических специальностей ВУЗов Сложившаяся в настоящее время практика преподавания курса Дискретная математика для студентов экономических специальностей ВУЗов приводит к тому что они фактически не обладают знаниями и умениями позволяющими успешно решать широкий круг практических задач использующих дискретные объекты и модели не имеют развитого логического мышления у них отсутствует культура алгоритмического мышления. Для восполнения указанных пробелов...
15214. ЦИФРОВЫЕ И ДИСКРЕТНЫЕ СИГНАЛЫ 97.04 KB
Обработкой сигнала называют процесс преобразования сигнала исходящего от источника информации с целью освобождения от различного рода помех и от информации вносимой косвенным характером измеряемого физического процесса и нелинейными характеристиками датчиков а также с целью представления полезной информации в наиболее удобной форме. С учетом математической модели сигнала и задач обработки строится математическая модель процесса ЦОС. Классы моделей систем ЦОС отличаются по видам решаемых задач...
15563. СПЕЦИАЛЬНЫЕ ДИСКРЕТНЫЕ СЛУЧАЙНЫЕ ПРОЦЕССЫ 58.05 KB
Модель авторегрессии выражает текущее значение процесса через линейную комбинацию предыдущих значений процесса и отсчета белого шума. Название процесса – термин математической статистики где линейная комбинация x = 1y1 2 y2 p yp z = z Ty связывающая неизвестную переменную x с отсчетами y = T называется моделью регрессии x регрессирует на y. Для стационарности процесса необходимо чтобы корни k характеристического уравнения p 1p-1 p =0 лежали внутри круга единичного круга I 1 . Корреляционная...
16918. Дискретные структурные альтернативы: методы сравнения и следствия для экономической политики 11.74 KB
Дискретные структурные альтернативы: методы сравнения и следствия для экономической политики Современная экономическая теория в своей основе даже если далеко не всегда есть основания идентифицировать специфические черты соответствующей исследовательской программы является теорией индивидуального выбора что обусловливает высокий статус принципа методологического индивидуализма в исследованиях посвященных самым разнообразным проблемам Шаститко 2006. Индивидуальный выбор строится на таких фундаментальных основаниях как ограниченность...
3111. Инвестиции и сбережения в кейнсианской модели. Макроэкономическое равновесие в модели “кейнсианский крест” 27.95 KB
Инвестиция – это функция ставки процента: I=Ir Эта функция убывающая: чем выше уровень процентной ставки тем ниже уровень инвестиций. По взглядам Кейнса сбережения – это функция доходаа не процентной ставки: S=SY Т. инвестиции являются функцией процентной ставки а сбережения – функцией дохода.
5212. Уровни модели OSI и TCP/IP 77.84 KB
Сетевая модель - теоретическое описание принципов работы набора сетевых протоколов, взаимодействующих друг с другом. Модель обычно делится на уровни, так, чтобы протоколы вышестоящего уровня использовали бы протоколы нижестоящего уровня
8082. Модели элементов 21.98 KB
Совокупность элементов модели дискретного устройства называется базисом моделирования. Очень часто базис моделирования не совпадает с элементным базисом. Обычно из более сложной модели базиса моделирования можно получить более простую модель. В данном случае совпадение 2х соседних итераций является критерием окончания моделирования одного входного набора.
2232. Цветовые модели 475.69 KB
О работе с цветом Свойства цвета и соответствие цветов Цветовой круг и дополнительные цвета Цветовой круг демонстрирует соотношение между тремя первичными цветами красным зеленым и синим и тремя первичными цветами голубым пурпурным и желтым. Цвета расположенные друг напротив друга называются дополнительными цветами. Если вы сделали фотографию в которой избыток зеленого цвета то этот эффект можно подавить добавив соответствующий дополнительный цвет пурпурный смесь красного и синего согласно модели RGB. Дополнительный цветовой...
7358. Модели обучения 16.31 KB
Традиционное обучение представляет собой обучение ЗУН по схеме: изучение нового - закрепление - контроль - оценка. Ученики выступают как объекты управления. Со стороны учителя преобладает авторитарно-директивный стиль управления и инициатива обучаемых чаще подавляется, чем поощряется
7155. Цвет и цветовые модели 97.22 KB
Чтобы успешно применять их в компьютерной графике необходимо: понимать особенности каждой цветовой модели уметь определять тот или иной цвет используя различные цветовые модели понимать как различные графические программы решают вопрос кодирования цвета понимать почему цветовые оттенки отображаемые на мониторе достаточно сложно точно воспроизвести при печати. Так как цвет может получиться в процессе излучения и в процессе отражения то существуют два противоположных метода его...

Для описания динамики моделируемых процессов в имитационном моделировании реализован механизм задания модельного времени. Эти механизмы встроены в управляющие программы любой системы моделирования.

Если бы на ЭВМ имитировалось поведение одной компоненты системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты. Чтобы обеспечить имитацию параллельных событий реальной системы вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе) t0, которую называют модельным (или системным) временем.

Существуют два основных способа изменения t 0 :

  • пошаговый (применяются фиксированные интервалы изменения модельного времени);
  • no-событийный (применяются переменные интервалы изменения модельного времени, при этом величина шага измеряется интервалом до следующего события).

В случае пошагового метода продвижение времени происходит с минимально возможной постоянной длиной шага (принцип t). Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

По-событийный метод (принцип "особых состояний"). В нем координаты времени меняются только когда изменяется состояние системы. В по-событийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение по-событийного метода предпочтительно в случае, если частота наступления событий невелика, тогда большая длина шага позволит ускорить ход модельного времени. На практике по-событийный метод получил наибольшее распространение.

Способ фиксированного шага применяется:

если закон изменения от времени описывается интегро-дифференциальными уравнениями. Характерный пример: решение интегро-дифференциальных уравнений численным методом. В подобных методах шаг моделирования равен шагу интегрирования. При их использовании динамика модели является дискретным приближением реальных непрерывных процессов; когда события распределены равномерно и можно подобрать шаг изменения временной координаты; когда сложно предсказать появление определенных событий; когда событий очень много и они появляются группами.

В остальных случаях применяется по-событийный метод. Он предпочтителен, когда события распределены неравномерно на временной оси и появляются через значительные временные интервалы.

Таким образом, вследствие последовательного характера обработки информации в ЭВМ, параллельные процессы, происходящие в модели, преобразуются с помощью рассмотренного механизма в последовательные. Такой способ представления носит название квазипараллельного процесса.


Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели:

Непрерывные;

Дискретные;

Непрерывно-дискретные.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Процессы в линейных импульсных и цифровых системах автоматического управления описываются дискретно – разностными уравнениями вида:

где x(n) –решетчатая функция входного сигнала; y(n) –решетчатая функция выходного сигнала, которая определяется решением уравнения (1.2); b k – постоянные коэффициенты;
– разность к – го порядка; t=nT , где nT n– ый момент времени, T – период дискретности (в выражении (1.2) он условно принят за единицу).

Уравнение (1.2) можно представить в другом виде:

Уравнение (1.3) представляет собой рекуррентное соотношение, которое позволяет вычислить любой (i+1) –й член последовательности по значениям предыдущих её членов i,i-1,... и значению x(i+1).

Основным математическим аппаратом моделирования цифровых автоматических систем является Z– преобразование, которое базируется на дискретном преобразовании Лапласа. Для этого необходимо найти импульсную передаточную функцию системы, задаться входной переменной и, варьируя параметрами системы, можно найти лучший вариант проектируемой системы.

1.3.4. Дискретно – стохастические модели (р - схемы)

К дискретно – стохастической модели относится вероятностный автомат . В общем, виде вероятностный автомат является дискретным потактным преобразователем информации с памятью, функционирование которого в каждом такте зависит только от состояния памяти в нем и может быть описано статистически. Поведение автомата зависит от случайного выбора.

Применение схем вероятностных автоматов имеет важное значение для проектирования дискретных систем, в которых проявляется статистически закономерное случайное поведение.

Для Р – автомата вводится аналогичное математическое понятие, как и для F – автомата. Рассмотрим множество G, элементами которого являются всевозможные пары (x i ,z s ) , где x i и z s элементы входного подмножества X и подмножества состояний Z соответственно. Если существуют две такие функции и
, что с их помощью осуществляется отображение
и
, то говорят, чтоопределяет автомат детерминированного типа.

Функция переходов вероятностного автомата определяет не одно конкретное состояние, а распределение вероятностей на множестве состояний

(автомат со случайными переходами). Функция выходов также есть распределение вероятностей на множестве выходных сигналов (автомат со случайными выходами).

Для описания вероятностного автомата введем в рассмотрение более общую математическую схему. Пусть Ф – множество всевозможных пар вида (z k ,y j ) , где y j – элемент выходного подмножества Y . Далее потребуем чтобы любой элемент множества G индуцировал на множестве Ф некоторый закон распределения следующего вида:

элементы из Ф...

...

...

где – вероятности перехода автомата в состояние z k и появления на выходе сигнала y j , если он был в состоянии z s и на его вход в этот момент времени поступал сигнал x i .

Число таких распределений, представленных в виде таблиц равно числу элементов множества G. Если обозначить это множество таблиц через В, то тогда четверку элементов
называютвероятностным автоматом (Р – автоматом). При этом
.

Частным случаем Р– автомата, задаваемого как
являются автоматы, у которых либо переход в новое состояние, либо выходной сигнал определяются детерминировано(Z– детерминированный вероятностный автомат, Y– - детерминированный вероятностный автомат соответственно).

Очевидно, что с точки зрения математического аппарата задание Y – детерминированного Р – автомата эквивалентно заданию некоторой марковской цепи с конечным множеством состояний. В связи с этим аппарат марковских цепей является основным при использовании Р– схем для аналитических расчетов. Подобные Р– автоматы используют генераторы марковских последовательностей при построении процессов функционирования систем или воздействий внешней среды.

Марковские последовательности , согласно теореме Маркова, –это последовательность случайных величин, для которой справедливо выражение

,

где N – количество независимых испытаний; D– - дисперсия.

Такие Р– автоматы (Р– схемы) могут быть использованы для оценки различных характеристик исследуемых систем как для аналитических моделей, так и для имитационных моделей с использованием методов статистического моделирования.

Y – детерминированный Р– автомат можно задать двумя таблицами: переходов (табл.1.1) и выходов (табл.1.2).

Таблица 1.1

Таблица 1.2

Где P ij – вероятность перехода Р– автомата из состояния z i в состояние z j , при этом
.

Таблицу 1.1 можно представить в виде квадратной матрицы размерности
. Такую таблицу будем называть матрицей переходных вероятностей или просто матрицей переходов Р- автомата , которую можно представить в компактной форме:

Для описания Y– детерминированного Р–автомата необходимо задать начальное распределение вероятностей вида:

где d k– вероятность того, что в начале работы Р– автомат находится в состоянии z k , при этом
.

И так, до начала работы Р– автомат находится в состоянии z 0 и в начальный (нулевой) такт времени меняет состояние в соответствии с распределением D. После этого смена состояний автомата определяется матрицей переходов Р. С учетом z 0 размерность матрицы Р р следует увеличить до
, при этом первая строка матрицы будет (d 0 ,d 1 ,d 2 ,...,d k ) , а первый столбец будет нулевым.

Пример. Y– детерминированный Р– автомат задан таблицей переходов:

Таблица 1.3

и таблицей выходов

Таблица 1.4

С учетом таблицы 1.3 граф переходов вероятностного автомата представлен на рис.1.2.

Требуется оценить суммарные финальные вероятности пребывания этого автомата в состоянии z 2 и z 3 , т.е. когда на выходе автомата появляются единицы.

Рис. 1.2. Граф переходов

При аналитическом подходе можно использовать известные соотношения из теории марковских цепей и получить систему уравнений для определения финальных вероятностей. Причем начальное состояние можно не учитывать в виду того, что начальное распределение не оказывает влияние на значения финальных вероятностей. Тогда таблица 1.3 примет вид:

где
– финальная вероятность пребыванияY– детерминированного Р– автомата в состоянии z k .

В результате получаем систему уравнений:

(1.4)

К данной системе следует добавить условие нормировки:

(1.5)

Теперь решая систему уравнений (1.4) совместно с (1.5), получаем:

Таким образом, при бесконечной работе заданного автомата на его выходе будет формироваться двоичная последовательность с вероятностью появления единицы, равной:
.

Кроме аналитических моделей в виде Р– схем можно применять и имитационные модели, реализуемые, например, методом статистического моделирования.