Одз функции примеры. ОДЗ уравнения — конечное число значений. Решение иррациональных уравнений и неравенств

Научный руководитель:

1. Введение 3

2. Исторический очерк 4

3. «Место» ОДЗ при решении уравнений и неравенств 5-6

4. Особенности и опасность ОДЗ 7

5. ОДЗ – есть решение 8-9

6. Нахождение ОДЗ – лишняя работа.

Равносильность переходов 10-13

7. ОДЗ в ЕГЭ 14-15

8. Заключение 16

9. Литература 17

1. Введение

Уравнения и неравенства, в которых нужно находить область допустимых значений, не нашли места в курсе алгебры систематического изложения, возможно поэтому мои сверстники часто делают ошибки при решении таких примеров, уделив много времени их решению, забыв при этом об области допустимых значений. Это и определило проблему данной работы.

В настоящей работе предполагается исследовать явление существования области допустимых значений при решении уравнений и неравенств разных типов; проанализировать данную ситуацию, сделать логически корректные выводы в примерах, где нужно учитывать область допустимых значений.

Задачи:

    Опираясь на имеющийся опыт и теоретическую базу, собрать основные сведения об области допустимых значений и её использовании в школьной практике; Проанализировать решения разнообразных типов уравнений и неравенств (дробно-рациональных, иррациональных, логарифмических, содержащих обратные тригонометрические функции); Проверить ранее полученные при решении различных уравнений и неравенств результаты, убедиться в надёжности способов и методов их решения; Определить «место» области допустимых значений при решении уравнений и неравенств; Применить полученные материалы исследования в ситуации, которая отличается от стандартной, и использовать их при подготовке к ЕГЭ.

При решении этих задач использованы следующие методы исследования : анализ, статистический анализ, дедукция, классификация, прогнозирование.

Исследование начато с повторения известных функций, изучаемых в школьной программе. Область определения многих из них имеет ограничения.

Область допустимых значений встречается при решении: дробно-рациональных уравнений и неравенств; иррациональных уравнений и неравенств; логарифмических уравнений и неравенств; уравнений и неравенств, содержащих обратные тригонометрические функции.

Прорешав множество примеров из различных источников (пособий по ЕГЭ, учебников, справочников), выделили решение примеров по следующим принципам:

· можно решить пример и учесть ОДЗ (самый распространённый способ)

· можно решить пример, не учитывая ОДЗ

· можно только учитывая ОДЗ прийти к правильному решению.

Изучен анализ результатов ЕГЭ за прошедшие годы. Много ошибок было допущено в примерах, в которых нужно учитывать ОДЗ. Практическое значение работы заключается в том, что ее содержание, оценки и выводы могут быть использованы в преподавании математики в школе, при подготовке к итоговой аттестации школьников 9 и 11 классов.

2. Исторический очерк

Как и остальные понятия математики, понятие функции сложилось не сразу, а прошло долгий путь развития. В работе П. Ферма «Введение и изучение плоских и телесных мест» (1636, опубл. 1679) говорится: «Всякий раз, когда в заключительном уравнении имеются две неизвестные величины, налицо имеется место». По существу здесь идёт речь о функциональной зависимости и её графическом изображении («место» у Ферма означает линию). Изучение линий по их уравнениям в «Геометрии» Р. Декарта (1637) также указывает на ясное представление о взаимной зависимости двух переменных величин. У И. Барроу («Лекции по геометрии», 1670) в геометрической форме устанавливается взаимная обратность действий дифференцирования и интегрирования (разумеется, без употребления самих этих терминов). Это свидетельствует уже о совершенно отчётливом владении понятием функции. В геометрическом и механическом виде это понятие мы находим и у И. Ньютона. Однако термин «функция» впервые появляется лишь в 1692 у Г. Лейбница и притом не совсем в современном его понимании. Г. Лейбниц называет функцией различные отрезки, связанные с какой-либо кривой (например, абсциссы её точек). В первом печатном курсе «Анализа бесконечно малых для познания кривых линий» Лопиталя (1696) термин «функция» не употребляется.

Первое определение функции в смысле, близком к современному, встречается у И. Бернулли (1718): «Функция - это величина, составленная из переменной и постоянной». В основе этого не вполне отчётливого определения лежит идея задания функции аналитической формулой. Та же идея выступает и в определении Л. Эйлера, данном им во «Введении в анализ бесконечных» (1748): «Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств». Впрочем, уже Л. Эйлеру не чуждо и современное понимание функции, которое не связывает понятие функции с каким-либо аналитическим её выражением. В его «Дифференциальном исчислении» (1755) говорится: «Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называют функциями вторых».

С начала XIX века уже всё чаще и чаще определяют понятие функции без упоминания об её аналитическом изображении. В «Трактате по дифференциальному и интегральному исчислению» (1797-1802) С. Лакруа говорится: «Всякая величина, значение которой зависит от одной или многих других величин, называется функцией этих последних». В «Аналитической теории тепла» Ж. Фурье (1822) имеется фраза: «Функция f(x) обозначает функцию совершенно произвольную, то есть последовательность данных значений, подчинённых или нет общему закону и соответствующих всем значениям x , содержащимся между 0 и какой-либо величиной x ». Близко к современному и определение Н. И. Лобачевского: «…Общее понятие функции требует, чтобы функцией от x называть число, которое даётся для каждого x и вместе с x постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подаёт средство испытывать все числа и выбирать одно из них, или, наконец, зависимость может существовать и оставаться неизвестной». Там же немного ниже сказано: «Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа одни с другими в связи понимать как бы данными вместе». Таким образом, современное определение функции, свободное от упоминаний об аналитическом задании, обычно приписываемое П. Дирихле (1837), неоднократно предлагалось и до него:

у есть функция переменной х (на отрезке https://pandia.ru/text/78/093/images/image002_83.gif" width="95" height="27 src=">. Возведя обе части уравнения в квадрат, мы избавимся от иррациональности. Но обратим внимание на то, что возведение в квадрат, вообще говоря, не равносильное преобразование, и при возведении в квадрат мы можем получить лишние корни. Если корни получились целые, то несложно произвести проверку. Но в некоторых случаях производить проверку неудобно. Тогда используют сведение данного уравнения к равносильной системе:

.

В данном случае нет необходимости находить ОДЗ: из первого уравнения следует, что при полученных значения х выполняется неравенство: https://pandia.ru/text/78/093/images/image005_34.gif" width="107" height="27 src="> является система:

Поскольку в уравнение и входят равноправно, то вместо неравенства , можно включить неравенство https://pandia.ru/text/78/093/images/image010_15.gif" width="220" height="49">

https://pandia.ru/text/78/093/images/image015_10.gif" width="239" height="51">

3. Решение логарифмических уравнений и неравенств.

3.1. Схема решения логарифмического уравнения

Но проверить достаточно только одно условие ОДЗ.

3.2..gif" width="115" height="48 src=">.gif" width="115" height="48 src=">

4. Тригонометрические уравнения вида равносильны системе (вместо неравенства в систему можно включить неравенство https://pandia.ru/text/78/093/images/image025_2.gif" width="377" height="23"> равносильны уравнению

4. Особенности и опасность области допустимых значений

На уроках математики от нас требуют нахождения ОДЗ в каждом примере. В то же время по математической сути дела нахождение ОДЗ вовсе не является обязательным, часто не нужно, а иногда и невозможно - и все это без какого бы то ни бы­ло ущерба для решения примера. С другой стороны, часто случается такое, что решив пример, школьники забывают учесть ОДЗ, записывают её как конечный ответ, учитывают лишь некоторые условия. Обстоятельство это хорошо из­вестно, но «война» продолжается каждый год и, похоже, будет идти еще долго.

Рассмотрим, к примеру, такое неравенство:

Здесь ищется ОДЗ, и неравенство решается. Однако при реше­нии этого неравенства школьники иногда считают, что вполне можно обойтись без поиска ОДЗ, точнее, можно обойтись и без условия

В самом деле, для получения верного ответа необходимо учесть и неравенство , и .

А вот, например, решение уравнения: https://pandia.ru/text/78/093/images/image033_3.gif" width="79 height=75" height="75">

что равносильно работе с ОДЗ. Однако и в этом примере такая работа излишняя - достаточно проверить выполнение только двух из этих неравенств, причем любых двух.

Напомним, что всякое уравнение (неравенство) может быть сведено к виду . ОДЗ - это просто область определения функции в левой части. То, что за этой об­ластью надо следить, вытекает уже из определения корня как числа из области определения данной функции, тем самым - из ОДЗ. Вот забавный пример на эту тему..gif" width="20" height="21 src="> имеет областью опреде­ления множество положительных чисел (это, конечно, договоренность - рассматривать функцию при, , но разум­ная), а тогда -1 не является корнем.

5. Область допустимых значений – есть решение

И наконец, в массе примеров нахождение ОДЗ позволяет получить ответ без громоздких выкладок, а то и вовсе устно.

1. ОД3 представляет собой пустое множество, а значит, исход­ный пример не имеет решений.

1) 2) 3)

2. В ОДЗ находится одно или несколько чисел, и несложная подстановка быстро определяет корни.

1) , х=3

2) Здесь в ОДЗ находится только число 1 , и после подстановки видно, что оно не является корнем.

3) В ОДЗ находятся два числа: 2 и 3 , и оба подходят.

4) > В ОДЗ находятся два числа 0 и 1 , и подходит только 1 .

Эффективно может использоваться ОДЗ в сочетании с анали­зом самого выражения.

5) < ОДЗ: Но в правой части неравенства могут быть только положительные числа, поэтому оставляем х=2 . Тогда в неравенство подставим 2 .

6) Из ОДЗ следует, что, откуда имеем ..gif" width="143" height="24"> Из ОДЗ имеем: . Но тогда и . Так как, то решений нет.

Из ОДЗ имеем:..gif" width="53" height="24 src=">.gif" width="156" height="24"> ОДЗ: . Так как, то

С другой стороны,. Равенство возможно только тогда, когда каждая часть уравнения равна 0 , т. е. при х=1 . После подстановки этого значения х убеждаемся, что решений нет.

ОДЗ:. Рассмотрим уравнение на промежутке [-1; 0).

На нем выполняются такие неравенства https://pandia.ru/text/78/093/images/image072_0.gif" width="68" height="24 src=">.gif" width="123" height="24 src="> и решений нет. При функции и https://pandia.ru/text/78/093/images/image077_0.gif" width="179" height="25">. ОДЗ: х>2 . При этом . Значит, исходное ра­венство невозможно и решений нет.

А теперь приведём пример, который был предложен учителем на уроке алгебры. Решить его сразу нам не удалось, но когда мы нашли ОДЗ, всё стало ясно.

Найдите целочисленный корень уравнения https://pandia.ru/text/78/093/images/image080_0.gif" width="124" height="77">

Целочисленное решение возможно лишь при х=3 и х=5 . Проверкой находим, что корень х=3 не подходит, а значит ответ: х=5.

6. Нахождение области допустимых значений – лишняя работа. Равносильность переходов.

Можно привести примеры, где ситуация ясна и без нахож­дения ОДЗ.

1.

Равенство невозможно, ибо при вычитании из меньшего выраже­ния большее должно получатся отрицательное число.

2. .

Сумма двух неотрицательных функций не может быть отрицатель­ной.

Приведу также примеры, где нахождение ОДЗ затруднено, а иногда просто невозможно.

И, наконец, поиски ОДЗ являются очень часто просто лишней работой, без которой прекрасно можно обойтись, доказав тем са­мым понимание происходящего. Тут можно привести громадное число примеров, поэтому выберем только наиболее типичные. Главным приемом решения являются в этом случае равносиль­ные преобразования при переходе от одного уравнения (нера­венства, системы) к другому.

1.. ОДЗ не нужна, ибо, найдя те значения х , при которых х2=1 , мы не можем получить х=0 .

2. . ОДЗ не нужна, ибо мы выясняем, когда выполняется равенство подкоренного выражения положи­тельному числу.

3. . ОДЗ не нужна по тем же сооб­ражениям, что и в предыдущем примере.

4.

ОДЗ не нуж­на, ибо подкоренное выражение равно квадрату некоторой функ­ции, а потому не может быть отрицательным.

5.

6. . ОДЗ не нужна, так как выражение всегда положительно.

7. Для решения до­статочно только одного ограничения для подкоренного выражения. В самом деле, из записанной смешанной системы следует, что и другое подкоренное выражение неотрицательно.

8. ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.

9. ОДЗ не нужна, так как достаточно, чтобы были положительны два из трех выражений под знаками логарифма, чтобы обеспечить положительность третьего.

10. .gif" width="357" height="51"> ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.

Стоит, однако, заметить, что при решении способом равно­сильных преобразований помогает знание ОДЗ (и свойств функ­ций).

Вот несколько примеров.

1. . ОД3 , откуда следует положительность выражения в правой части, и возможно записать уравнение, рав­носильное данному, в таком виде . Полученный ре­зультат надо проверить по ОДЗ.

2. ОДЗ: . Но тогда , и при решении этого неравенства не надо рассматривать случай, когда правая часть меньше 0.

3. . Из ОДЗ следует, что , а потому случай, когда , исключается.

В целом эффективность способа равносильных преобразова­ний вроде бы ясна. С их помощью мы добираемся до ответа и без поисков ОДЗ. Значит ли это, что имеется некий универсальный способ и осталось только научиться им пользоваться? Но это не совсем так. Тому несколько причин. Теорем о равносиль­ных преобразованиях довольно много, они непросты для запоми­нания, и уверенное владение ими – дело не простое. Часто, пользуясь равносильными преобразованиями, начинаешь ставить этот знак при любых переходах от одного уравнения к другому, как действительно равносильных, так и не являющихся таковыми. Теоремы же эти быстро забываются.

Еще одна сложность - при записи равносильности мо­жно забыть выписать все условия, ее гарантирующие, но на ответе это может никак не отразиться. Вот два таких примера:

1. Переход в общем виде выглядит так:

В данном примере выражение под знаком логарифма, стоящего справа, всегда положительно. Поэтому применительно к этому примеру та часть условий равносильности, которая записана в ви­де совокупности, ничего не добавляет. Но дав такое решение, можно просто забыть об этой совокупности.

Возможны два случая: 0<<1 и >1.

Значит, исходное неравенство равносильно следующей совокупности систем неравенств:

Первая система не имеет решений, а из второй получаем: x<-1 – решение неравенства.

Понимание условий равносильности требует знания некоторых тонкостей. Например, почему равносильны такие уравнения:

Или

И наконец, возможно, самое существенное. Дело в том, что равносильность гарантирует правильность ответа, если совер­шаются какие-то преобразования самого уравнения, но не исполь­зуется при преобразованиях только в одной из частей. Сокращение, использование различных формул в одной из частей не попадают под действие теорем о равносильности. Некоторые примеры такого вида были приведены в работе. Рассмотрим еще примеры.

1. Такое решение естественно. В ле­вой части по свойству логарифмической функции перейдём к выражению . В результате получим уравнение . Оно равносильно такой системе

Решив эту систему, мы получим результат (-2 и 2), который, однако, не является ответом, так как число -2 не входит в ОДЗ. Так что же, нам необходимо установить ОДЗ? Нет, конечно. Но раз мы в решении использовали некое свойство логарифмической функции, то мы обязаны обеспечить те условия, при кото­рых оно выполняется. Таким условием является положительность выражений под знаком логарифма..gif" width="65" height="48">.

2. ..gif" width="143" height="27">.gif" width="147" height="24">добавить условие , и сразу видно, что этому условию отвечает только число https://pandia.ru/text/78/093/images/image129.gif" width="117" height="27">) продемонстрировали 52% сдающих. Одной из причин таких низких показателей является тот факт, что многие выпускники не произвели отбор корней, полученных из уравнения после его возведения в квадрат.

3) Рассмотрим, например, решение одной из задач С1: "Найдите все значения x, для которых точки графика функции лежат выше соответствующих точек графика функции . Задание сводится к решению дробного неравенства, содержащего логарифмическое выражение. Приемы решения таких неравенств нам известны. Самым распространенным из них является метод интервалов. Однако при его применении сдающие допускают разнообразные ошибки. Рассмотрим наиболее распространенные ошибки на примере неравенства:

1. Выпускники правильно находят ОДЗ, решая систему неравенств:

откуда x . Далее, умножая обе части неравенства на общий знаменатель, получают неравенство: lg(23 - 10x

2..gif" width="124" height="29">. Далее они получают x – 10 +; . Решая это уравнение и учитывая условие , выпускники делают вывод – уравнение не имеет решений.

3. Сдающие верно преобразовывают уравнение к виду

и рассматривают два случая: x 10 и x < 10. Они отмечают, что в первом случае решений нет, а во втором – корнями являются числа –1 и . При этом выпускники не учитывают условие x < 10.

8. Заключение

В данной работе мы постарались исследовать явление существования области допустимых значений при решении уравнений и неравенств разных типов, проанализировали данную ситуацию, сделали логически корректные выводы в примерах, где нужно учитывать область допустимых значений. Для меня тема «Область допустимых значений» казалась очень сложной и непонятной, да и в школьных учебниках этой теме не отводится должного места, она практически не освещена, хотя в заданиях ЕГЭ присутствуют задачи на решение уравнений и неравенств, в которых необходимо найти область допустимых значений. В процессе работы мы столкнулись с тем, что литературы по данной теме недостаточно для полного и систематического изучения. Мы думаем, что эта тема требует пристального внимания учёных-математиков и методистов.

Прорешав множество примеров из различных источников, мы можем подвести некоторый итог: уни­версального метода решения уравнений и неравенств нет. Каждый раз, если хочешь понять, что делаешь, а не действовать механически, думаешь: а какой способ решения выбрать, в частности, искать область допустимых значений или не надо? Мы считаем, что полученный опыт поможет решить эту дилемму. Школьники перестанут делать ошибки, научившись правильно использовать область допустимых значений. Получится ли у нас это, покажет время, точнее предстоящий ЕГЭ 2010.

Надеемся, что представленная работа будет интересна и полезна педагогам и учащимся, и ОДЗ перестанет быть «каким-то нехорошим ОДЗ» для школьников.

9. Литература

1. , и др. «Алгебра и начала анализа 10-11» задачник и учебник, М.: «Просвещение», 2002.

2. «Справочник по элементарной математике». М.: «Наука», 1966.

3. Газета «Математика» №46,

4. Газета «Математика» №

5. Газета «Математика» №

6. «История математики в школе VII-VIII классы». М.: «Просвещение», 1982.

7. и др. «Самое полное издание вариантов реальных заданий ЕГЭ: 2009/ФИПИ» - М.: «Астрель», 2009.

8. и др. «ЕГЭ. Математика. Универсальные материалы для подготовки учащихся/ФИПИ» - М.: «Интеллект-центр», 2009.

9. и др. «Алгебра и начала анализа 10-11». М.: «Просвещение», 2007.

10. , «Практикум по решению задач школьной математики (практикум по алгебре)». М.: Просвещение, 1976.

11. «25000 уроков математики». М.: «Просвещение», 1993.

12. «Готовимся к олимпиадам по математике». М.: «Экзамен», 2006.

13. «Энциклопедия для детей «МАТЕМАТИКА»» том 11, М.: Аванта +; 2002.

14. Материалы сайтов http://www. ***** , http://www. ***** .

Интернет-портал Википедия http://ru. wikipedia. org/wiki/Числовая_функция (Дата просмотра 05.03.2010).

, «Практикум по решению задач школьной математики (практикум по алгебре)». М.: Просвещение, 1976, с.64.

Вопрос школьника на Ответы@***** http://otvet. *****/question/8166619/ (Дата просмотра 22.03.2010)

Методическое письмо «Об использовании результатов единого государственного экзамена 2008 года в преподавании математики в образовательных учреждениях среднего (полного) общего образования» http://www. ***** (Дата просмотра 17.12.2009)

В уравнениях и неравенствах вида , , , , пересечение областей определения функций и называют областью допустимых значений (ОДЗ) переменной, а также ОДЗ уравнения или неравенства соответственно.

При решении уравнений (неравенств) с одной переменной, когда встает вопрос – находить ли ОДЗ, часто можно услышать категоричное «да» и не менее категоричное «нет». «Сначала нужно найти ОДЗ, а затем приступать к решению уравнения (неравенства)», - утверждают одни. «Незачем тратить время на ОДЗ, по ходу решения будем переходить к равносильному уравнению (неравенству) или к равносильной системе уравнений и неравенств или только неравенств. В конце концов, если это уравнение, то можно сделать проверку», - утверждают другие.

Так находить ли ОДЗ?

Конечно, однозначного ответа на этот вопрос не существует. Нахождение ОДЗ уравнения или неравенства не является обязательным элементом решения. В каждом конкретном примере этот вопрос решается индивидуально.

В одних случаях нахождение ОДЗ упрощает решение уравнения или неравенства (примеры 1-5), а в ряде случаев даже является необходимым этапом решения (примеры 1, 2, 4).

В других случаях (примеры 6, 7) от предварительного нахождения ОДЗ стоит отказаться, так как оно делает решение более громоздким.

Пример 1. Решить уравнение .

Возведение обеих частей уравнения в квадрат не упростит, а усложнит его и не позволит избавиться от радикалов. Нужно искать другой способ решения.

Найдем ОДЗ уравнения:

Таким образом, ОДЗ содержит только одно значение , а, следовательно, корнем исходного уравнения может служить только число 4. Непосредственной подстановкой убеждаемся, что – единственный корень уравнения.

Пример 2. Решить уравнение .

Наличие в уравнении радикалов различных степеней – второй, третьей и шестой – делает решение сложным. Поэтому, прежде всего, найдем ОДЗ уравнения:

Непосредственной подстановкой убеждаемся, что является корнем исходного уравнения.

Пример 3. Решить неравенство .

Конечно, можно решать это неравенство, рассматривая случаи: , , но нахождение ОДЗ сразу же упрощает это решение.

ОДЗ:

Подставляя это единственное значение в исходное неравенство, получим ложное числовое неравенство . Следовательно, исходное неравенство не имеет решения.

Ответ: нет решения.

Пример 4. Решить уравнение .

Запишем уравнение в виде .

Уравнение вида равносильно смешанной системе т.е.

Конечно, здесь нахождение ОДЗ излишне.

В нашем случае получим равносильную систему т.е.

Уравнение равносильно совокупности Уравнение рациональных корней не имеет, но оно может иметь иррациональные корни, нахождение которых вызовет у учащихся затруднения. Поэтому поищем другой способ решения.

Вернемся к первоначальному уравнению, запишем его в виде .

Найдем ОДЗ: .

При правая часть уравнения , а левая часть . Следовательно, исходное уравнение в области допустимых значений переменной х равносильно системе уравнений решением которой является только одно значение .

Таким образом, в данном примере именно нахождение ОДЗ позволило решить исходное уравнение.

Пример 5. Решить уравнение .

Так как , а , то при решении исходного уравнения нужно будет избавляться от модулей (раскрывать их).

Поэтому, сначала имеет смысл найти ОДЗ уравнения:

Итак, ОДЗ:

Упростим исходное уравнение, воспользовавшись свойствами логарифмов.

Так как в области допустимых значений переменной х и , то , а , тогда получим равносильное уравнение:

Учитывая, что в ОДЗ , перейдем к равносильному уравнению и решим его, разделив обе части на 3.

Ответ: − 4,75.

Замечание.

Если не находить ОДЗ, то при решении уравнения необходимо было бы рассмотреть четыре случая: , , , . На каждом из этих промежутков знакопостоянства выражений, стоящих под знаком модуля, нужно было бы раскрыть модули и решить полученное уравнение. Кроме того еще и выполнить проверку. Мы видим, что нахождение ОДЗ исходного уравнения значительно упрощает его решение.

Пример 7. Решить неравенство .

Так как переменная х входит и в основание логарифма, то при решении этого неравенства необходимо будет рассмотреть два случая: и . Поэтому отдельно находить ОДЗ нецелесообразно.

Итак, представим исходное неравенство в виде и оно будет равносильно совокупности двух систем:

Ответ: .

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Поздравляю вас, дорогие читатели!

Наконец-то мы дошли до решения тригонометрических уравнений. Сейчас мы решим несколько уравнений, которые похожи на задания ЕГЭ. Конечно, в реальном экзамене, задачи будут немного сложнее, но суть останется та же.

Для начала рассмотрим легкое уравнение (подобные мы уже решали в прошлых уроках, но повторить всегда полезно).

$$(2\cos x + 1) (2\sin x - \sqrt{3}) = 0.$$

Думаю, объяснения, как решать, излишни.

$$2\cos x + 1 = 0 \text{ или } 2\sin x - \sqrt{3} =0,$$

$$\cos x = -\frac{1}{2} \text{ или } \sin x = \frac{\sqrt{3}}{2},$$

Горизонтальным пунктиром отмечено решение для уравнения с синусом , вертикальным - с косинусом.

Таким образом, итоговое решение можно записать, например, так:

$$\left[ \begin{array}{l}x= \pm \frac{2\pi}{3},\\x = \frac{\pi}{3}+2\pi k. \end{array}\right.$$

Тригонометрическое уравнение с ОДЗ

$$(1+\cos x)\left(\frac{1}{\sin x} - 1\right) = 0.$$

Важное отличие в этом примере, что в знаменателе появился синус. Хотя мы немного решали подобные уравнения в предыдущих уроках, стоит остановиться на ОДЗ поподробнее.

ОДЗ

`\sin x \neq 0 \Rightarrow x \neq \pi k`. Когда мы будем отмечать решение на круге, эту серию корней мы отметим специально проколотыми (открытыми) точками, чтобы показать, что `x` не может принимать такие значения.

Решение

Приведем к общему знаменателю, а затем поочередно приравняем обе скобки к нулю.

$$(1+\cos x)\left(\frac{1-\sin x}{\sin x}\right) = 0,$$

$$1+\cos x = 0 \text{ или } \frac{1-\sin x}{\sin x} = 0,$$

$$\cos x = -1 \text{ или } \sin x=1.$$

Надеюсь, решение этих уравнений не вызовет затруднений.

Серии корней - решений уравнения - показаны ниже красными точками. ОДЗ отмечена на рисунке синим.

Таким образом, понимаем, что решение уравнения `\cos x = -1` не удовлетворяет ОДЗ.
В ответ пойдет только серия корней `x = \frac{\pi}{2} + 2\pi k`.

Решение квадратного тригонометрического уравнения

Следующий пункт нашей программы - решение квадратного уравнения . Ничего сложного собой не представляет. Главное - увидеть квадратное уравнение и выполнить замену как будет показано ниже.

$$3\sin^2 x + \sin x =2,$$

$$3\sin^2 x + \sin x -2=0.$$

Пусть `t= \sin x`, тогда получим:

$$3t^2 + t-2=0.$$

$$t_1 = \frac{2}{3}, t_2 = -1.$$

Выполним обратную замену.

$$\sin x = \frac{2}{3} \text{ или } \sin x = -1.$$

$$\left[\begin{array}{l}x = \arcsin \frac{2}{3} + 2\pi k, \\ x = \pi - \arcsin \frac{2}{3} + 2\pi k, \\ x = -\frac{\pi}{2} + 2\pi k. \end{array} \right.$$

Решение квадратного уравнения с тангенсом

Решим следующее уравнение:

$$\newcommand{\tg}{\mathop{\mathrm{tg}}}{\tg}^2 2x - 6\tg 2x +5 =0, $$

Обратим внимание, что аргумент у тангенса равен `2x` и чтобы получить окончательный ответ, нужно будет поделить на `2`. Пусть `t=\tg 2x`, тогда

$$t^2 - 6t +5 =0, $$

$$t_1 = 5, t_2 = 1.$$

Обратная замена.

$$\tg x = 5, \tg x = 1.$$

$$\left[\begin{array}{l}2x = \arctan{5}+\pi k, \\ 2x = \frac{\pi}{4} + \pi k. \end{array} \right.$$

Теперь поделим обе серии на два, чтобы узнать, чему равен, собственно, `x`.

$$\left[\begin{array}{l}x = \frac{1}{2}\arctan{5}+\frac{\pi k}{2}, \\ 2x = \frac{\pi}{8} + \frac{\pi k}{2}. \end{array} \right.$$

Вот мы и получили ответ.

Последнее уравнение (произведение тангенса на синус)

$$\tg x \cdot \sin 2x = 0.$$

ОДЗ

Поскольку тангенс - это дробь, знаменателем которой является косинус, то в ОДЗ получим, что `\cos x \neq 0 \Rightarrow x \neq \frac{\pi}{2}+\pi k.`

Решение

$$\tg x =0 \text{ или } \sin 2x = 0.$$

Эти уравнения решаются легко. Получим:

$$x = \pi k \text{ или } 2x = \pi k,$$

$$x = \pi k \text{ или } x = \frac{\pi k}{2}.$$

Теперь самое интересное: поскольку у нас было ОДЗ, нужно выполнить отбор корней. Отметим полученные серии корней на круге. (Как это сделать, детально показано в приложенном видео.)

Синим отмечено ОДЗ, красным - решения. Видно, что ответ будет `x = \pi k`.

На этом пятый урок закончен. Обязательно практикуйтесь в решении уравнений. Одно дело в знать ход решения в общих чертах, другое дело - сориентироваться, при решении конкретной задачи. Постепенно отрабатывайте каждый элемент решения задачи. Сейчас главное - научиться грамотно работать с тригонометрическим кругом, находить с его помощью решения, видеть ОДЗ и правильно делать замены для квадратных уравнений.

Задачи для тренировки

Решите уравнения:

  • `2 \cos^2 \frac{x}{2} + \sqrt{3} \cos \frac{x}{2} = 0`,
  • `3 {\tg}^2 2x + 2\tg 2x -1= 0`,
  • `2\cos^2 3x - 5\cos 3x -3 =0`,
  • `\sin^2 4x + \sin x - \cos^2x =0` (применить основное тригонометрическое тождество),
  • `4\sin^2 \left(x-\frac{\pi}{3} \right) - 3 =0`.

На этом хватит. Будут вопросы - спрашивайте! Оставляйте лайки, если мой труд оказался полезен:)

Как ?
Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия – . Активное обсуждение данного понятия началось в статье о множествах и продолжилось на первом уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает область определения следующих функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, синуса, косинуса. Они определены на (множестве всех действительных чисел) . За тангенсы, арксинусы, так и быть, прощаю =) – более редкие графики запоминаются далеко не сразу.

Область определения – вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения – это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: – значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения – там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения и графика там нет.

Как найти область определения функции? Многие помнят детскую считалку: «камень, ножницы, бумага», и в данном случае её можно смело перефразировать: «корень, дробь и логарифм». Таким образом, если вам на жизненном пути встречается дробь, корень или логарифм, то следует сразу же очень и очень насторожиться! Намного реже встречаются тангенс, котангенс, арксинус, арккосинус, и о них мы тоже поговорим. Но сначала зарисовки из жизни муравьёв:

Область определения функции, в которой есть дробь

Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции .

Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби:

Пример 1

Найти область определения функции

Решение : в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки:

Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции . Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль.

Ответ : область определения:

Запись читается так: «область определения – все действительные числа за исключением множества, состоящего из значений ». Напоминаю, что значок обратного слеша в математике обозначает логическое вычитание , а фигурные скобки – множество . Ответ можно равносильно записать в виде объединения трёх интервалов:

Кому как нравится.

В точках функция терпит бесконечные разрывы , а прямые, заданные уравнениями являются вертикальными асимптотами для графика данной функции. Впрочем, это уже немного другая тема, и далее я на этом не буду особо заострять внимание.

Пример 2

Найти область определения функции

Задание, по существу, устное и многие из вас практически сразу найдут область определения. Ответ в конце урока.

Всегда ли дробь будет «нехорошей»? Нет. Например, функция определена на всей числовой оси. Какое бы значение «икс» мы не взяли, знаменатель не обратится в ноль, более того, будет всегда положителен: . Таким образом, область определения данной функции: .

Все функции наподобие определены и непрерывны на .

Чуть более сложнА ситуация, когда знаменатель оккупировал квадратный трёхчлен:

Пример 3

Найти область определения функции

Решение : попытаемся найти точки, в которых знаменатель обращается в ноль. Для этого решим квадратное уравнение :

Дискриминант получился отрицательным, а значит, действительных корней нет, и наша функция определена на всей числовой оси.

Ответ : область определения:

Пример 4

Найти область определения функции

Это пример для самостоятельного решения. Решение и ответ в конце урока. Советую не лениться с простыми задачками, поскольку к дальнейшим примерам накопится недопонимание.

Область определения функции с корнем

Функция с квадратным корнем определена только при тех значениях «икс», когда подкоренное выражение неотрицательно : . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-й степени в исследованиях функций не припоминаю.

Пример 5

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси . Пожалуйста, не путайте с неравенствами двух переменных , где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть, меняя у них (слагаемых) знаки.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменить знак самого неравенства . Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ : область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».
Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:

Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

Пример 6

Найти область определения функции

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции

Решение : подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:

Дискриминант положителен, ищем корни:

Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).

Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :

! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье и методичке Горячие формулы школьного курса математики .

Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ : область определения:

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальным методом интервалов , известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства .

Пример 8

Найти область определения функции

Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .

А вот менее очевидный пример: . Здесь дискриминант отрицателен (парабола не пересекает ось абсцисс), при этом ветви параболы направлены вверх, следовательно, и область определения: .

Вопрос противоположный: может ли область определения функции быть пустой ? Да, и сразу напрашивается примитивный пример , где подкоренное выражение отрицательно при любом значении «икс», и область определения: (значок пустого множества). Такая функция не определена вообще (разумеется, график тоже иллюзорен).

С нечётными корнями и т.д. всё обстоит гораздо лучше – тут подкоренное выражение может быть и отрицательным . Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

Область определения функции с логарифмом

Третья распространённая функция – логарифм. В качестве образца я буду рисовать натуральный логарифм, который попадается примерно в 99 примерах из 100. Если некоторая функция содержит логарифм , то в её область определения должны входить только те значения «икс», которые удовлетворяют неравенству . Если логарифм находится в знаменателе: , то дополнительно накладывается условие (так как ).

Пример 9

Найти область определения функции

Решение : в соответствии с вышесказанным составим и решим систему:

Графическое решение для чайников:

Ответ : область определения:

Остановлюсь ещё на одном техническом моменте – у меня ведь не указан масштаб и не проставлены деления по оси. Возникает вопрос: как выполнять подобные чертежи в тетради на клетчатой бумаге? Отмерять ли расстояние между точками по клеточкам строго по масштабу? Каноничнее и строже, конечно, масштабировать, но вполне допустим и схематический чертёж, принципиально отражающий ситуацию.

Пример 10

Найти область определения функции

Для решения задачи можно использовать метод предыдущего параграфа – проанализировать, как парабола расположена относительно оси абсцисс. Ответ в конце урока.

Как видите, в царстве логарифмов всё очень похоже на ситуацию с квадратным корнем: функция (квадратный трёхчлен из Примера №7) определена на интервалах , а функция (квадратный двучлен из Примера №6) на интервале . Неловко уже и говорить, функции типа определены на всей числовой прямой.

Полезная информация : интересна типовая функция , она определена на всей числовой прямой кроме точки . Согласно свойству логарифма , «двойку» можно вынести множителем за пределы логарифма, но, чтобы функция не изменилась, «икс» необходимо заключить под знак модуля: . Вот вам и ещё одно «практическое применение» модуля =). Так необходимо поступать в большинстве случаев, когда вы снОсите чётную степень, например: . Если же основание степени заведомо положительно, например, , то в знаке модуля отпадает необходимость и достаточно обойтись круглыми скобками: .

Чтобы не повторяться, давайте усложним задание:

Пример 11

Найти область определения функции

Решение : в данной функции у нас присутствует и корень и логарифм.

Подкоренное выражение должно быть неотрицательным: , а выражение под знаком логарифма – строго положительным: . Таким образом, необходимо решить систему:

Многие из вас прекрасно знают или интуитивно догадываются, что решение системы должно удовлетворять каждому условию.

Исследуя расположение параболы относительно оси , приходим к выводу, что неравенству удовлетворяет интервал (синяя штриховка):

Неравенству , очевидно, соответствует «красный» полуинтервал .

Поскольку оба условия должны выполняться одновременно , то решением системы является пересечение данных интервалов. «Общие интересы» соблюдены на полуинтервале .

Ответ : область определения:

Типовое неравенство , как демонстрировалось в Примере №8, нетрудно разрешить и аналитически.

Найденная область определения не изменится для «похожих функций», например, для или . Также можно добавить какие-нибудь непрерывные на функции, например: , или так: , или даже так: . Как говорится, корень и логарифм – вещь упрямая. Единственное, если одну из функций «сбросить» в знаменатель, то область определения изменится (хотя в общем случае это не всегда справедливо). Ну а в теории матана по поводу этого словесного… ой… существуют теоремы.

Пример 12

Найти область определения функции

Это пример для самостоятельного решения. Использование чертежа вполне уместно, так как функция не самая простая.

Ещё пару примеров для закрепления материала:

Пример 13

Найти область определения функции

Решение : составим и решим систему:

Все действия уже разобраны по ходу статьи. Изобразим на числовой прямой интервал, соответствующий неравенству и, согласно второму условию, исключим две точки:

Значение оказалось вообще не при делах.

Ответ : область определения

Небольшой математический каламбур на вариацию 13-го примера:

Пример 14

Найти область определения функции

Это пример для самостоятельного решения. Кто пропустил, тот в пролёте;-)

Завершающий раздел урока посвящен более редким, но тоже «рабочим» функциям:

Области определения функций
с тангенсами, котангенсами, арксинусами, арккосинусами

Если в некоторую функцию входит , то из её области определения исключаются точки , где Z – множество целых чисел . В частности, как отмечалось в статье Графики и свойства элементарных функций , у функции выколоты следующие значения:

То есть, область определения тангенса: .

Убиваться сильно не будем:

Пример 15

Найти область определения функции

Решение : в данном случае и в область определения не войдут следующие точки:

Скинем «двойку» левой части в знаменатель правой части:

В результате :

Ответ : область определения: .

В принципе, ответ можно записать и в виде объединения бесконечного количества интервалов, но конструкция получится весьма громоздкой:

Аналитическое решение полностью согласуется с геометрическим преобразованием графика : если аргумент функции умножить на 2, то её график сожмётся к оси в два раза. Заметьте, как у функции уполовинился период, и точки разрыва участились в два раза. Тахикардия.

Похожая история с котангенсом. Если в некоторую функцию входит , то из её области определения исключаются точки . В частности, для функции автоматной очередью расстреливаем следующие значения:

Иными словами: