Селен физические свойства. Селен — универсальный элемент здоровья и долголетия

Собственное имя металл получил в 1817-ом году, — селен. Химический элемент нарекли по-гречески, в переводе значит «Луна». Название же теллура на древнем языке олицетворяло Землю. Так что, даже после официального разделения элементов, они остались в связке.

Как же произошло открытие селена ? Его обнаружили в осадке при изучении серной кислоты, производимой в городке Грисхольм. Красно-коричневую массу подвергли прокаливанию. Запахло редькой. Ее аромат стоял и на пиритовых рудниках – кладези теллура. Ученые думали, что это его запах.

Да только вот выделить теллур из осадка так и не удалось. Химики Йенс Берцелиус и Готлиб Ган поняли, что открыли новый элемент. Чем он пахнет, понятно. А каковы другие свойства металла, есть ли практическое применение?

Химические и физические свойства селена

Селен – элемент 16-ой группы периодической системы. В столбце находятся халькогены, то есть рудообразующие вещества. Таков и селен, занимающий в таблице 34-е место.

В одном ряду с ним находится не только близкий по свойствам теллур, но и сера. С ней селен, так же, не раз путали. Элементы, как правило, встречаются вместе. 34-ый металл – примесь к самородной и сульфидным минералам.

В природе найдено 5 стабильных изотопов селена, то есть, его разновидностей. Ученые именуют их модификациями. Металлическая из них лишь одна – это серый селен . Его кристаллическая решетка гексагональна.

Она состоит из шестигранных призм. Атомы расположены в центре их оснований. Внешне материал напоминает , цвет затемненный, блеск выраженный.

Металл быстро тонет в воде, в отличие от аморфной модификации. Ее представляет порошкообразное состояние. Последнее – это мелкие частицы, взвешенные в однородной среде. Ей-то и становится вода. Порошок способен оставаться на ее поверхности несколько часов, лишь потом медленно оседает.

Если цветовая характеристика селена металлического – «серый», то аморфный элемент чисто красный, или с коричневым, почти черным отливом. Вещество темнеет при нагревании. Чтобы размягчиться достаточно 50-ти градусов Цельсия. В тепле аморфный селен становится клейким и вязким.

Хим элемент селен бывает и стекловидным. Те же 50 градусов – показатель уже не размягчения, а напротив, затвердения вещества. Его стеклянный, цвет черный, излом раковистый. Это значит, что углубления, образующиеся при повреждении поверхности, напоминают по форме раковины.

Модификация разжижается, нагреваясь до 100 градусов. В пластичном состоянии стекловидный селен легко вытягивается в тонкие нити, наподобие того, как застывает кондитерская карамель.

4-ый тип элемента – коллоидный. Формула селена позволяет ему растворяться в воде. То есть, модификация не твердая, а представлена раствором. Он красноватый и способен флюоресцировать, то есть самопроизвольно светиться. Для этого нужен постоянный источник лучей, к примеру, исходящих от .

Встречается, так же, кристаллический селен . В виде металла элемент напоминает , самородки. Кристаллическая же модификация ассоциируется с выходами драгоценных камней. Агрегаты моноклинны, то есть, наклонены в одну сторону.

Цвет кристаллов – алый или вишневый. Модификация разрушается при температуре в 120 градусов Цельсия, переходя в гексагональную. Металлическая форма 34-го элемента, вообще, самая динамически устойчивая из 5-ти. К ней стремятся все изотопы.

Электронная форма элемента селена в любой из модификаций одинакова – 4s 2 4p 4 . Это обуславливает типичную степень окисления вещества – 2. Электронная формула атома селена , точнее, его внешнего уровня, делает предсказуемыми и химические взаимодействия 34-го элемента.

Он вступает в реакции со всеми металлами, образуя селениды. Легко совмещается и с галогенами. Взаимодействие проходит при комнатной температуре. В концентрированной серной кислоте 34-ый элемент растворяется даже при минусе. Образуется раствор зеленого цвета.

Применение селена

Хоть раствор селена в серной кислоте и зеленый, но промышленники используют элемент как раз для того, чтобы этот цвет нейтрализовать. Речь о стекольной отрасли и производстве керамики.

Многие эмали имеют зеленоватый отлив из-за присутствия железа. Селен обесцвечивает материалы. Если же добавить к 34-му элементу , получится знаменитое рубиновое .

Селен в таблице Менделеева выделяют и металлурги. Элемент служит лигатурой при отливке сталей. Раньше в них добавляли серу, но ее металлические свойства не столь выражены. Селен же делает мелкокристаллическим, без пор. Исключается возможность дефектов литья, увеличивается текучесть стали.

Электронная формула селена – часть электроники. Элемент можно извлечь, к примеру, из телевизоров. В них 34-ый металл содержится в фотоэлементах и выпрямителях переменного тока. Контролировать его селену позволяет свойственная ему ассиметричная проводимость.

То есть, вещество пропускает ток лишь в определенном направлении. Технология такова: слой селена наносится на пластину из железа, сверху размещают сульфид кадмия. Теперь поток электронов пойдет исключительно от железа к соединению кадмия.

Полупроводниковые свойства 34-го элемента стали причиной того, что больше половины его запасов уходят на нужды технической промышленности. Используют металл и в качестве катализатора в реакциях органического синтеза. Они – часть фотографического дела и копировальной сферы.

«Сердце» всем известных Ксероксов – селеновые барабаны . Под воздействием света они начинают проводить электричество, приобретая положительный заряд. Изображение оригинала отражается и проецируется на барабан. Так и получаются копии.

Применение 34-го элемента ограничено его токсичностью. Так, формула оксида селена пригождается в -ионных батареях. Однако, к коже вещество лучше не подносить, разъест ткани. Хотя, медики приспособили селен для борьбы с раком.

Добыча селена

Поскольку селен примешен к сере, элемент извлекают из сульфата железа. Для этого даже делать особо ничего не надо. 34-ый металл накапливается в пылеочистительных камерах сернокислотных заводов. Забирают селен и из установок электролиза меди.

После него остается анодный шлам. Из него-то и выделяют 34-ый элемент. Достаточно обработать шлам растворами гидроксида и диоксида серы. Полученный селен нужно очистить. Для этого используют метод дистилляции. После, металл подсушивают.

Цена селена

За последние 3 месяца стоимость селена упала с 26 до 22-ух долларов за килограмм. Это данные Лондонской биржи цветных металлов. Эксперты прогнозируют, что спад цены вновь сменится ее ростом. Вне бирж металлом торгуют по стоимости, зависящей от модификации элемента и его формы.

Так, за килограмм серых гранул просят 4 000- 6 000 рублей. Технический, то есть порошкообразный, плохо очищенный селен , можно купить в районе 200 рублей за 1 000 граммов.

Разбег цен зависит и от дальности поставок, заказываемых объемов. Если селен входит в состав лекарственных препаратов, несколько граммов могут стоить, как целый килограмм. Здесь важно уже комплексное действие препарата, а не себестоимость его частей.

Знаете ли вы, уважаемые читатели, что здоровье и долголетие нашего организма зависят от трех сберегающих систем: иммунной, антиоксидантной и детоксицирующей?

Деятельность каждой из них является сложным биологическим механизмом, зависящим от разных компонентов и обстоятельств.

Но общим фактором, от которого зависит слаженная работа этих систем является присутствие в них универсального химического элемента. Селен что это такое, полезные свойства, для чего он нужен организму, к чему приводит дефицит селена и его недостаток, сегодня в статье.

Недостаток селена в организме сразу сказывается на состоянии здоровья, даже воздух, которым мы дышим становится на фоне недостатка селена настоящим ядом, его активные формы не только превращаются в разрушителя витаминов, но и нарушают работу системы по выведению шлаков и токсинов из организма.

Что такое селен и для чего он нужен организму

Универсальный химический элемент селен был открыт и описан в 19 веке. По своим химическим свойствам он относится к неметаллам, хотя и имеет необычно-красивый переливающийся металлический оттенок. Полупроводником он является по своим физическим свойствам.

В природе его немного. А вот в местах извержения вулканов, в больших количествах отмечается присутствие селена в почве, поэтому им богата и флора и фауна.

Этот удивительный элемент на протяжении длительного времени считали сильнейшим ядом, и относились к нему с предостережением, пока в 1973 году не открыли его заново и не выяснили, насколько он важен для жизнедеятельности человеческого организма и животных.

Теперь селен по праву считается химическим элементом здоровья и долголетия, ведь его обнаружили в составе почти всех ферментов и гормонов. От этого вещества зависит работа всех систем организма человека.

В одних клетках или системах селен присутствует как вещество, в других — в виде составной части ферментов. Специалисты подсчитали, что он присутствует в 200 ферментов, и при дефиците селена в организме эти ферменты синтезироваться не могут.

Селен концентрируется в разных органах по-разному, больше его в головном мозге, почках, печени, семенной жидкости, хрящевой ткани.

Селену природа отвела важную роль — защиты от разрушительного воздействия тяжелых металлов (мышьяк, кадмий, ртуть, свинец, таллий) и контроль за всеми процессами созидания в нашем организме.

Роль селена в организме человека

Этот незаменимый микроэлемент считают элементом долголетия, что обусловлено его уникальными свойствами. Селен принимает участие в синтезе пептида — глутатиона, который выполняет главнейшую роль в протекании окислительно-восстановительных реакций, держит щит иммунной системы, спасающей нас от инфекций, рака и раннего старения.

Селен защищает организм человека на внутриклеточном уровне, он контролирует генетические нарушения, «следит» за здоровьем хромосом. Он обладает антибактериальными и противовирусными свойствами, противоопухолевыми и противовоспалительными, антистрессовым и антипоптическим эффектом.

Селен выполняет многочисленные функции в организме:

☀ усиливает иммунитет организма (стимулирует образование антител, белых кровяных клеток, клеток-киллеров, макрофагов и интерферона, участвует в выработке эритроцитов),

☀ является сильным антиоксидантом (препятствует развитию опухолевых процессов и старению организма, нейтрализует и выводит чужеродные вещества, активирует витамин Е),

☀ снижает риск развития сердечнососудистых заболеваний (предотвращает мышечную дистрофию сердца, нейтрализует токсины, стимулирует синтез гемоглобина, участвует в выработке эритроцитов и кофермента Q10),

☀ выступает сильным антиопухолевым фактором (предотвращает и приостанавливает развитие злокачественных образований),

☀ входит в состав большинства гормонов, ферментов и некоторых белков,

☀ стимулирует обменные процессы в организме,

☀ защищает организм от токсичных проявлений ртути, кадмия, свинца, таллия и серебра,

☀ стимулирует репродуктивную функцию (входит в состав сперматозоидов),

☀ стабилизирует работу нервной системы,

☀ нормализирует работу эндокринной системы,

☀ уменьшает остроту воспалительных процессов

☀ благотворно влияет на состояние кожных покровов, ногтей и волос.

Полезные свойства

Как работает селен в организме. Ученые отмечают, что невзирая на мизерное содержание селена в организме, роль его в поддержании жизнедеятельности всех систем и органов велика. Всем известно, что человеку для жизни, движения, работы необходима энергия. Теперь точно установлено, что почти вся энергия, производимая митохондриями клеток происходит только с участием селена (т.е 85%)! Энергия необходима всем органам:

  • сердцу она нужна для того, чтобы дать движение крови, которая доставляет питание всем клеткам и системам, и забирает у них отходы,
  • легким — чтобы осуществлять газообмен,
  • органам пищеварения — чтобы расщеплять и переваривать пищу, а после усваивать ее,
  • почкам — энергия нужна для фильтрации крови и выведению с мочой ненужных продуктов обмена.

Все эти процессы в организме идут с участием селена, и если его не хватает, то деятельность любого органа будет нарушена, что сопровождается массой неприятных симптомов, появлением хронической усталости и зарождением разных болезней.

Представляете, в каждой клетке нашего организма, всего лишь, за одну минутку протекает 1 миллион химических реакций. А за одну секунду появляются тысячи свободных радикалов. Это ущербные молекулы, у которых не хватает одного электрона и они варварски отнимают его у других молекул, тем самым, превращая их в таких же варваров — свободных радикалов.

Но мы помним, что для строительства всех клеток и тканей нужны только стабильные, а не ущербные молекулы. Но если процесс образования свободных радикалов будет прогрессировать, это вызовет ответную реакцию — разрушения тканей и клеток организма.

Сдерживает процесс роста радикалов, за счет действия антиоксидантной системы организма, в которую входят витамин С, А, Е и элемент селен. И только в присутствии селена идет синтез ферментов, участвующих в антиоксидантной защите. Поэтому селен является одним из главных звеньев для силы иммунитета и детоксикации.

Он защищает организм от загрязненной воды и пищи, нейтрализует табачный дым, выхлопные газы, все тяжелые металлы, которые незаметно накапливаются в организме (свинец, мышьяк, ртуть, кадмий).

Теперь ученые с уверенностью говорят, что селен осуществляет контроль за всем циклом жизнедеятельности клетки, от ее зарождения и до смерти.

Какие заболевания вызывает дефицит селена в организме

Ученые установили, что в условиях нехватки селена иммунная система не может сполна выполнять свои функции. Начинается сбой за сбоем:

Нарушается процесс обмена йода и работа щитовидной железы, поскольку ее слаженная работа зависит от присутствия йода. А щитовидная железа регулирует обменные процессы, поэтому происходит процесс торможения роста и развития организма.

Дефицит селена в организме вызывает появление множества заболеваний:

  • возрастает число патологий во время беременности и тяжелых родов,
  • увеличивается рост рожденных детей с патологиями,
  • растет число болеющих подростков,
  • развиваются женские и мужские заболевания, вызывающие бесплодие,
  • хронические заболевания протекают в тяжелой форме,
  • капилляры становятся хрупкими и ломкими,
  • сперматозоиды теряют свою подвижность, становятся инертными,
  • растет количество психических заболеваний,
  • появляются анемия и диабет, гепатит и эндемический зоб,
  • инсульт и инфаркт миокарда и некоторые онкологические заболевания,
  • зарождаются новые вирусные болезни,
  • снижается качество жизни человека и ее продолжительность.

Как недостаток селена влияет на сердце

Мы выяснили, что селен является важным элементом, который называют биокорректором, поскольку ни одна клетка не способна работать без его присутствия. Химический элемент селен:

  • поддерживает правильный и сбалансированный обмен холестерина и жира, препятствуя образованию холестериновых бляшек,
  • следит, чтобы у стенок сосудов не нарушалась эластичность, чтобы мышцы сердца были в тонусе,
  • контролирует вязкость крови, и тормозит образование тромбов,
  • противостоит возникновению атеросклероза и гипертонической болезни,
  • ограждает клетки кровеносной системы и сердца от разрушительного воздействия свободных радикалов.

Сердце очень чувствительно к содержанию селена в клетках, если уровень его падает до 45 мкг/кг, то сразу же возникает риск возникновения сердечной недостаточности. Острая сердечная недостаточность появляется, если уровень селена падает до 20 мкг/кг, что приводит к остановке сердца.

Ученые установили закономерную зависимость между содержанием селена в крови и развитием ишемической болезни сердца. Практические наблюдения показали, что сердечные болезни в 70 раз чаще возникают у людей с пониженными показателями селена.

Кофермент Q10, защищающий мышцу сердца от кислородной недостаточности и участвует в восстановлении сердца после инфаркта, тоже синтезируется в организме только в присутствии элемента селена.

Как дефицит влияет на щитовидную железу?

Щитовидная железа выполняет в организме человека руководящую роль в энергетическом обмене клеток, регулировании работы всех органов и систем, а для этого ей приходится синтезировать некоторые гормоны.

Одним из таких гормонов является Т4, который после отдачи одного атома йода превращается в активный гормон — трийодтиронин, участвующий в энергетическом обмене. Этот процесс протекает с участием селена.

Если селена недостаточно в клетках щитовидной железы, значит гормон трийодтиронин не синтезируется. Если нет этого гормона, значит отсутствует энергия в клетках организма. И тогда мозг человека посылает сигнал щитовидной железе о непродуктивности ее работы. Щитовидная железа отвечает напряженной работой и увеличивается в размерах, или образует узлы. Но селена по-прежнему не хватает, а в щитовидке от его недостатка появились проблемы.

Последние исследования ученых указывают на то, что часто заболевания щитовидной железы бывают вызваны не дефицитом йода, а недостатком селена. Присутствие же селена, обладающего выраженным антиоксидантным свойством, защищает клетки и ткани щитовидки, уменьшает воспалительный процесс, разрушает свободные радикалы.

Химический элемент селен с помощью щитовидной железы и йода управляет жизнедеятельностью нашего организма, регулируя обмен веществ, иммунитет, работу клеток головного мозга…

Недостаток селена в организме вызывает рак

Частота возникновения рака зависит от уровня селена в организме, эта взаимосвязь уже доказана учеными. Когда уровень селена в норме, он затормаживает рост начавшейся опухоли.

Атипичные или раковые клетки образуются у всех людей, через каждые 10 минут зарождаются такие клетки. Но при наличии селена, в организме сразу вырабатываются специальные ферменты, которые расщепляют раковые клетки.

Но если в организме отмечается недостаток селена, то такие ферменты выработаться не могут, и атипичные клетки продолжают расти и размножаться, образуя опухоль. В процессе размножения раковых клеток накапливаются токсические вещества, которые тоже из-за недостатка селена не нейтрализуются и продолжают накапливаться в организме.

Исследования ученых Америки, проводившиеся более 10 лет, по изучению влияние селена на организм человека показали, что среди больных людей онкологией, в группе принимавшей элемент по 200 мкг в день, смертность была снижена на 50% по сравнению с исследуемыми, которые препарат не принимали. Среди исследуемых людей, были больные раком кишечника, легких, предстательной железы.

Это интересно:

«Учёные недавно выяснили, что концентрация селена в сыворотке крови ниже 45 мкг/л приводит к возникновению опухолей как доброкачественных, так и злокачественных».

Почему образуется дефицит селена

Суточная потребность селена. Дело в том, что организм не способен синтезировать селен и получает его с потребляемой пищей. В среднем, в организм человека должно поступать до 100 мкг/в сутки: взрослым мужчинам требуется — 70 мкг, до 55 мкг — женщинам, беременным и кормящим женщинам — до 75 мкг. Если учитывать, что человек будет получать такое количество селена ежедневно, то за всю жизнь, объем съеденного селена не превысит и 1/2 чайной ложечки.

Но к сожалению, по России совсем другая статистика. Специалисты подчеркивают, что в среднем, жители России потребляют с пищей всего лишь 30 мкг селена, поэтому дефицит селена испытывают 80% жителей.

Потребность в селене человек удовлетворяет на 90% через продукты питания и на 10% через воду. Считается, что самое большое количество селена содержится в орехе бразильском, луке и чесноке.

Важно учитывать, есть ли природный дефицит селена? Если в биосфере вашего региона недостаток селена, то сколько бы вы не ели чеснока и лука, выращенного на своем участке, пользы не будет или она будет мизерной.

А применение химикатов, еще более снижает уровень усваиваемой формы селена в почве, а значит и в растениях, выращенных на этой земле. На количество селена в окружающей среде влияют лесные пожары, сжигание травы и сухой листвы.

Данные НИИ питания Российской академии медицинских наук, говорят о том, что почти по всей территории России отмечается дефицит селена в почве. Особенно, у нас в Забайкалье и в Бурятии, подтвержден исследованиями низкий уровень биологически активного селена в почве, до 10 мкг/кг, что вызывает заболевания у человека, животных и растений.

Низкий уровень селена отмечается в Удмуртии, Северо-западном регионе страны (Ленинградской области, Карелии), Верхнем Поволжье (Ивановской, Костромской, Ярославской областях).

У людей, проживающих в районах с низким содержанием селена в окружающей среде, гораздо чаще прогрессируют болезни желудка и кишечника, печени и мочеполовой системы, недостаток селена проявляется на состоянии кожи, ногтей, волос, зубов, костей.

Что такое селеновые ямы? Ученые выделяют несколько периодов в жизни человека, когда селен очень-очень необходим организму:

  • «новорожденным, от рождения до 2 лет;
  • при половом созревании от 11-20 лет;
  • «Христов возраст» (30 — 33 года), когда уже начинаются процессы старения организма;
  • период беременности, особенно опасно, если это период совпадает с возрастом Христа;
  • климактерические периоды у женщин и мужчин и далее, когда содержание селена в плазме крови и соединительной ткани становится низким (после 70 лет)».

Эти периоды, совпадая с селеновой недостаточностью, являются огромным фактором риска для зарождения различных заболеваний.

Поэтому ученые ставят вопрос о проведении селенизации страны, как это делают в других странах. Генеральный директор кардиологического центра Москвы, академик Е. Чазов, утверждает, что если запустить в нашей стране программу восполнения дефицита селена, то всего лишь за один год, можно спасти около 600 тыс. человек, болеющих сердечными болезнями.

А вот в Финляндии эта программа работает в государственном масштабе. Там при производстве продуктов и при приготовлении пищи добавляется селен. Статистика показывает потрясающие результаты:

  • сердечные заболевания в стране снизились почти в 2,5 раза,
  • заболевания эндокринной системы уменьшились на 77%,
  • общие заболевания стали возникать реже на 47%,
  • а онкологические сократились в 1,8 раза.

Чем опасен избыток селена в организме

Чтобы поддерживать свое здоровье и самочувствие в хорошем состоянии необходим определенный баланс химического элемента селена в организме. Дело в том, что этот уникальный элемент проявляет свое коварство. Не только недостаток селена, но и избыток селена в организме может привести к нарушению здоровья.

Поэтому нужно быть внимательными и стараться соблюдать суточную потребность селена, о которой говорилось выше.

Избыток селена в организме может появиться у работников контактирующих с этим элементом: в электронной, стекольной, лакокрасочной промышленности. У тех, кто постоянно проживает в районах страны с действующими вулканами (Курилы, Камчатка).

Случаются селеновые передозировки при приеме БАД-ов, когда человек принимает сразу несколько пищевых добавок, содержащих селен.

Необходимо помнить, что длительное потребление селена в высоких дозах, до 200 мкг/сутки, может вызвать отравление, которое проявляется в тошноте и болях живота, сопровождающиеся диареей. Часто возникает раздражительность и нейропатия, характерный чесночный запах изо рта и металлический привкус.

Отражается избыток селена и на коже в виде шелушения и дерматита, могут выпадать волосы, расслаиваться ногти, повреждаться эмаль на зубах.

Нарушения здоровья, связанные с избытком селена в организме встречаются крайне редко. И все же, принимая пищевые добавки, не забывайте о возможной передозировке, строго руководствуйтесь инструкцией, либо посоветуйтесь с лечащим врачом.

  • В следующей статье читайте:

Желаю вам здоровья, уважаемые читатели!

☀ ☀ ☀

В статьях блога используются картинки, из открытых источников Интернета. Если вы, вдруг, увидите свое авторское фото, сообщите об этом редактору блога через форму . Фотография будет удалена, либо будет поставлена ссылка на ваш ресурс. Спасибо за понимание!

СЕЛЕН , Se, химический элемент VIII группы периодической системы, аналог серы и теллура, с которыми составляет триаду, подобную группе Сl, Вг и J. Порядковое число 34, атомный вес 79,2; известны изотопы селена с атомными весами 80, 78, 76, 82, 77 и 74. Подобно сере селен образует несколько аллотропических модификаций. Различают четыре характерные формы модификаций селена, из которых две «жидкие» (стекловидный и аморфный) и две кристаллические (красный и серый селен).

Стекловидный селен получается вливанием расплавленного селена в холодную воду в виде коричневато-серой массы в тонких слоях и тёмно-красного цвета в порошке: при 50°С начинает размягчаться; удельный вес 4,28-4,36; при комнатной температуре не проводит тока; при трении заряжается отрицательно; при помощи лучей радия - положительно, растворим в сероуглероде; удельная теплоемкость 0,106.

Аморфный селен получается при осаждении селена из его соединений на холоде; так, при подкислении раствора KCNSe получается красный аморфный селен; ярко красный порошок, прилипающий к рукам и к бумаге при 40-50°С, он размягчается, при охлаждении твердеет и становится хрупким и похожим на стекловидный селен, удельная теплоемкость 0,082. Коллоидный селен получают в виде красного раствора осторожным восстановлением очень разбавленного раствора двуокиси селена при помощи сернистого газа, гидразина или гидроксиламина. При сплавлении с нафталином, антраценом, фенантреном, фенолом, дифениламином селен переходит в плав в коллоидной форме, которая при застывании превращается в массу красного цвета, просвечивающую синим; стабилизуется коллоидный селен с помощью протальбинового и лизальбинового натрия, образуя блестящие пластинки красного цвета, легко растворимые в воде.

Красный кристаллический селен получается перекристаллизацией селена из горячего сероуглеродного раствора его в виде прозрачных красных блестящих листочков, удельный вес 4,45, температура плавления 170-180°С; твердость 2 по шкале Мооса; вполне растворим в сероуглероде, образуя раствор красного цвета. Существует в двух моноклинных формах; α-форма при медленном нагревании переходит при 110-120°С в β-форму; при 125-130°С красный кристаллический селен (β-форма) переходит в металлическую серую модификацию.

Серый кристаллический металлический селен - свинцово-серые (до черного) кристаллы гексагонально ромбоэдрической системы, изоморфные с теллуром. При растирании превращается в черный, переходящий затем в красный порошок, удельный вес 4,78, удельная теплоемкость 0,078, твердость 2 по Моосу, температура плавления 217°С, при 250°С вполне жидкий; при быстром охлаждении застывает в стекловидную массу; проводит электричество, при соприкосновении с металлами обнаруживает термоэлектричество; в холодном сероуглероде нерастворим; легко растворяется в хлороформе; металлический селен есть смесь двух форм, из которых α-форма матово-серая, отливающая красным, при комнатной температуре плохо проводящая ток; β-форма светло-серая, проводящая ток; α-форма метастабильна и легко переходит в β-форму, особенно при нагревании до 200°С. Усиление освещения селена способствует образованию β -формы, проводящей ток; по мнению некоторых авторов β-форма в свою очередь состоит из двух модификаций, находящихся в равновесии, причем усиление освещения способствует образованию более электропроводящей формы. Селен во всех модификациях диамагнитен.

Важнейшее физическое свойство селена - изменение электропроводности с освещением селена - представляет большой практический интерес. Для одного и того же образца селена электропроводность растет с увеличением напряжения при постоянном токе сильнее, чем при переменном; при постоянном напряжении электропроводность растет со временем. Сопротивление селена прохождению тока падает очень резко с усилением освещения. Повышение электропроводности прямо пропорционально корню квадратному (по некоторым авторам корню 4-й степени) из силы света. Примесь теллура делает селен восприимчивее к более коротким волнам. Рентгеновы лучи, ультрафиолетовые и другие действуют как видимые лучи. По Адамсу освещенный селен обнаруживает фотоэлектрический эффект. На этом свойстве основано применение селена для фотоэлементов, в частности в приборах для измерения силы света звезд. Свыше 220°С все твердые модификации селена переходят в расплавленное состояние. Жидкий селен коричнево-тёмно-красного цвета, не изменяющегося с температурой. Вязкость селена не изменяется с температурой, как это свойственно сере; температура кипения жидкого селена 690°С. Расплавленный селен проводит электрический ток; он легко м. б. переохлажден, причем образуется аморфный или стекловидный селен. В химическом отношении селен близок к сере и теллуру, ближе к сере; дает соединения с галоидами и металлами (селениды ). Расплавленный селен действует на железо . На воздухе сгорает, образуя окись селена SeО 2 ; с водородом соединяется при достаточном нагревании, образуя селенистый водород H 2 Se. Соляная кислота не реагирует с селеном, азотная кислота окисляет до SeО 2 . Разбавленная серная кислота не действует, а концентрированная H 2 SО 4 растворяет, давая раствор зеленого цвета, и при разбавлении выделяет селен; щелочи растворяют селен. Кислород при обыкновенной температуре на селен не действует. В щелочах селен растворяется с образованием солей: селенидов, селенитов и полиселенидов.

Соединения селена . В соединениях селен бывает 2-, 4- и реже 6-валентным, образует комплексные соединения типа Me 2 (SeR 6). Селен дает ряд солей, аналогичных солям серы; селеносульфит Na 2 SSeО 3 (тип гипосульфита), селеносульфид Na 2 SSe n (тип полисульфида), селеноцианид KCNSe (тип роданида) и т. д. Известны также органические соединения селена, построенные также по типу соответствующих соединений серы, например, дихлордиэтилселенид Se(C 2 H 4 Cl), аналог иприта. Немногие соединения селена находят практическое применение. Селенистый водород H 2 Se получается при действии кислот на его соли (селениды Me 2 Se), легко образуется также из элементов при нагревании до 350°С в присутствии пемзы; от водорода очищается конденсацией при температуре 40-60°С. При обычной температуре H 2 Se - газ удельный вес (по воздуху) 2,795; H 2 Se легко разлагается на элементы, на воздухе горит с образованием окиси селена; SeО 2 мало растворим в воде; с водой образует гидрат. В водном растворе является слабой кислотой. Соли H 2 Se, селениды, подобны сульфидам. Двуокись селена SeО 2 образуется при сильном накаливании селена в токе кислорода или воздуха, причем селен воспламеняется; кристаллизуется в бесцветных иглах, температура плавления 340°С, восстановителями (например, фенилгидразином) переводится снова в селен; удельный вес 3,95; легко растворима в воде, спирте, плохо - в бензоле; SeО 2 - сильный окислитель, при окислении восстанавливающийся до Se; выделение Seиз SeO 2 происходит при нагревании с S, Р, С, Н2 и металлами. При растворении в воде SeО 2 образует селенистую кислоту H 2 SeO 3 - большие кристаллы гексагональной системы, удельного веса 3,006, выпадающие при выпаривании раствора. Селеновая кислота H 2 SeО 4 получается при окислении H 2 SeО 3 с помощью перекиси водорода, перманганата калия, двуокиси марганца и др. H 2 SeО 4 - сильная кислота, почти как серная. Селен дает соли - селениты типа Me2SeО 3 . Селенит натрия Na 2 SeО 3 кристаллизуется в маленьких призмах гексагональной системы; легко растворим в воде, в спирте меньше; получается выпариванием Н 2 SеO 3 с теоретическим количеством раствора соды или едкого натра, также нагреванием SeО 2 с NaOH. С галоидами селен дает ряд соединений: SeF 6 - инертный газ, SeF 4 - бесцветная жидкость; Se 2 Cl2 - жидкость красноватого цвета; четыреххлористый селен SeCl 4 получают хлорированием селена с избытком Сl; твердое кристаллическое тело. Технический интерес имеет оксихлорид селена SeOCl 2 , получаемый перегонкой SeCl 4 с SeО 2 , по реакции SeО 2 + SeCl 4 = 2SeOCl 2 , или осторожным добавлением Н 2 О к SeCl 4 ; температура плавления 8,5°С; температура кипения 177,2°С; при нагревании до температуры кипения разлагается, смешивается во всех отношениях с ССl 4 , CS 2 , СНСl 3 , С 6 Н 6 ; растворяет S, Se, Те, Вг и J; известен также оксифторид селена - бесцветная дымящая жидкость. Почти все соединения селена оказывают сильное физиологическое действие: H2Se ядовит и вызывает головные боли, воспаление глаз и слизистых оболочек; SeО 2 и H 2 SeО 3 вызывают раздражение кожи, подобное экземе; еще сильнее действует H2SeО 4: вызывает на коже раны, разъедает ногти. Действие Se (С 2 Н 4 Сl) 2 аналогично действию иприта.

Распространение селена в природе . В свободном состоянии селен встречается в залежах элементарной серы, гл. образом вулканического происхождения. Однако подобные месторождения сравнительно редки, и сырье этого рода в технологии селена не имеет большого значения. Чаще селен встречается в виде селенидов: берцелианит - селенид меди Cu 2 Se, тиеманит - селенид ртути, клаусталит - селенид свинца, науманит - селенид серебра; известны также и селениты: меди (Аргентина) - халькоменит , свинца - молибдоменит и кобальта - кобальтоменит ; зоргит (Аргентина) содержит до 31% Se; известны также эйкарит - (Cu, Ag) 2 Se и крукезит - (Сu, Fe, Ag) 2 Se. В небольших количествах селена содержится в пирите; при его сжигании в производстве серной кислоты селен окисляется до SeO 2 и вместе с SО 2 попадает в пыльные камеры; там сернистым газом SeО 2 восстанавливается до Se, в результате чего, в зависимости от метода производства серной кислоты, выделяется в элементарном виде в пыльных камерах, котрелях, гловеровой башне, в сернокислотных камерах и т. п., где и накопляется в виде пыли или ила, которые и являются исходным сырьем для получения селена.

Получение селена:

1) Из камерного ила . Как указано выше, селен восстанавливается с помощью SO 2 до элементарного Se;

SeО 2 +2SО 2 =Se+2SО 3 .

Выпавший элементарный селен частично осаждается в пыльных камерах, частично попадает в гловерову башню и в камеры, где осаждается в виде ила, содержащего кроме селена сернокислый свинец и другие примеси. В илах гловеровой башни содержание селена доходит до 25%, в содержащих свинец илах 0,1-2%, реже до 5%. Переработка ила производится различными способами: а) с помощью цианистого калия KCN ил обрабатывается при 80-100°С концентрированным раствором KCN, при этом сера переходит в раствор в виде роданистого калия KCNS, a Se - в виде KCNSe. По фильтровании раствор и промывные воды подкисляют соляной кислотой, причем осаждается селен; сера остается в растворе в виде HCNS. Недостатком метода является относительно высокая цена KCN, а главное - выделение при подкислении HCN, представляющей сильнейший яд. б) При окислительном методе ил обрабатывается азотной кислотой, сплавляется с селитрой и т. д. Образующиеся при этом окислы селена (SeО 2 , иногда SeО 3) переходят в раствор, и по выпаривании азотной кислоты выпавший сухой остаток растворяется в концентрированной соляной кислоте, после чего SeO 2 восстанавливается, например, сернистым газом:

2H 2 О+SeО 2 +2SО 2 =2H2SО 4 +Se.

в) При огневом методе селен возгоняется (вместе с серой) при нагревании ила в ретортах. Метод в настоящее время не представляет интереса. г) При растворении в сульфите натрия с последующим выделением селена кислотой:

Na 2 SO 3 +Se=Na 2 S+SeО 3 .

Метод связан с выделением SО 2 при подкислении и с получением селена, загрязненного серой, так как получающийся одновременно и Na 2 S 2 О 3 при подкислении выделяет серу. Метод имеет также и ряд других недостатков. Для обогащения ила предложено несколько методов, например, обработка ила концентрированным кипящим раствором MgCl 2 , причем образуется MgSО 4 и РbСl 2 (при нагревании легко растворимый), а селен остается в осадке, и др. В последнее время делались попытки обогащения ила флотацией. Из всех предложенных методов за границей имели наибольшее распространение цианистый и окислительный, причем последний, например, в таком виде: ил обрабатывался NaNО 3 в присутствии 85 %-ной H 2 SО 4 ; затем в смесь вдувался пар до разбавления N 2 SО 4 до 30° Вѐ (градусов Боме), после чего сквозь раствор продувался воздух до удаления окислов азота, и после фильтрования жидкости и добавлении соляной кислоты селен осаждался сернистым газом. В последнее время предложен был (W. Stahl) метод, основанный на растворении селена в дымящей серной кислоте и на выделении селена сернистым газом. Так как среднее содержание селена в иле невелико, стоимость такой переработки оказывается слишком высокой. В институте им. Л. Я. Карпова разработан метод получения селена из камерного ила, основанный на предварительном использовании содержащегося в иле свинца. В основном метод заключается в следующем: промытый от сернистой кислоты ил с содержанием, например, 2% селена обрабатывается содой, причем сульфат свинца переходит в карбонат:

PbSО 4 +Na 2 CО 3 =PbCО 3 +Na 2 SО 4 ;

РbСO 3 растворяют в уксусной кислоте, и образующийся ацетат свинца отфильтровывают, уваривают, и он идет на кристаллизацию. Отмытый от Рb ил содержит 30-40% селена, который м. б. извлечен из ила любым способом.

2) Получение селена из пыли производилось до сих пор одним из описанных выше способов.

3) Получение селена из анодного шлама электрических установок для рафинировки меди . В зависимости от состава шлам подвергается различным предварительным операциям: так, медь удаляют после окисления на воздухе посредством растворения в серной кислоте; Pb, Sb с разными добавками переводятся в шлак (известь и т. д.). Селен растворяют после этого, продолжая вводить воздух и добавляя к массе соду и селитру; одновременно переходит в раствор и часть теллура. Из раствора солей селенистой и теллуристой кислот последняя м. б. удалена прибавлением разбавленной серной кислоты:

Na 2 TeО 3 + H 2 SО 4 =Na 2 SО 4 +TeО 2 +H 2 О,

причем ТеО 2 выпадает. Образующаяся по аналогичному уравнению H 2 SeО 3 остается в растворе. Осаждение Se производится восстановлением с помощью SO 2 в сернокислой или, лучше, солянокислой среде.

Очистка селена . Обычно применяется окисление азотной кислотой с последующим осаждением селена; предварительно, до осаждения селена, можно еще несколько раз произвести возгонку SeО 2 . Нагреванием с концентрированной серной кислотой, по некоторым данным, можно перевести селен в раствор в виде SeO 2 и восстановлением получить чистый продукт.

Применение селена . Se применяют в стекольной промышленности для обесцвечивания зеленого стекла и для получения рубиновых стекол и в резиновой промышленности (вместо серы) для получения стойких сортов каучука, затем для фотоэлементов и разнообразных приборов, связанных со свойством селена проводить ток при усиленном освещении. Здесь можно упомянуть работы над применением селена для передачи изображений на расстояние, для измерения энергий световых лучей, в частности лучей звезд, для автоматического зажигания уличных фонарей и т. д. Соединения селена находят кроме того применение в фотографии (виражные ванны и т.п.); SeOCl 2 предложен как растворитель ненасыщенных органических соединений - каучука, смол; далее - как добавка к горючему (в качестве антидетонатора). Соли H 2 SeО 3 с успехом применяются вместо серы для окраски и обесцвечивания стекла вследствие их меньшей летучести и меньших потерь при работе. H 2 SeО 3 и Li- и Th-соли ее имеют сильное фунгисидное и бактерисидное действие. Сплав S-Se (в соотношении 2:1) предложен в качестве изолятора в смеси с различными наполнителями. Наконец этот же сплав в различных соотношениях применяется для вулканизации каучука.

Селе́н - химический элемент с атомным номером 34 в периодической системе химических элементов Д.И. Менделеева, обозначается символом Se (лат. Selenium), хрупкий блестящий на изломе неметалл чёрного цвета (устойчивая аллотропная форма, неустойчивая форма - киноварно-красная).

История

Элемент открыт Й. Я. Берцелиусом в 1817. Название происходит от греч. σελήνη - Луна. Элемент назван так в связи с тем, что в природе он является спутником химически сходного с ним теллура (названного в честь Земли).

Получение

Значительные количества селена получают из шлама медно-электролитных производств, в котором селен присутствует в виде селенида серебра. Применяют несколько способов получения: окислительный обжиг с возгонкой SeO 2 ; нагревание шлама с концентрированной серной кислотой, окисление соединений селена до SeO 2 с его последующей возгонкой; окислительное спекание с содой, конверсия полученной смеси соединений селена до соединений Se(IV) и их восстановление до элементарного селена действием SO 2 .

Физические свойства

Твёрдый селен имеет несколько аллотропных модификаций. Наиболее устойчивой модификацией является серый селен. Красный селен представляет собой менее устойчивую аморфную модификацию.
При нагревании серого селена он даёт серый же расплав, а при дальнейшем нагревании испаряется с образованием коричневых паров. При резком охлаждении паров селен конденсируется в виде красной аллотропной модификации.

Химические свойства

Селен - аналог серы и проявляет степени окисления −2 (H 2 Se), +4 (SeO 2) и +6 (H 2 SeO 4). Однако, в отличие от серы, соединения селена в степени окисления +6 - сильнейшие окислители, а соединения селена (-2) - гораздо более сильные восстановители, чем соответствующие соединения серы.
Простое вещество - селен гораздо менее активно химически, чем сера. Так, в отличие от серы, селен не способен гореть на воздухе самостоятельно. Окислить селен удаётся только при дополнительном нагревании, при котором он медленного горит синим пламенем, превращаясь в двуокись SeO 2 . Со щелочными металлами селен реагирует (весьма бурно) только будучи расплавленным.
В отличие от SO 2 , SeO 2 - не газ, а кристаллическое вещество, хорошо растворимое в воде. Получить селенистую кислоту (SeO 2 + H 2 O → H 2 SeO 3) ничуть не сложнее, чем сернистую. А действуя на неё сильным окислителем (например, HClO 3), получают селеновую кислоту H 2 SeO 4 , почти такую же сильную, как серная.

Так же, как и серу, его можно сжечь на воздухе. Горит синим пламенем, превращаясь в двуокись SeO 2 . Только SeO 2 не газ, а кристаллическое вещество, хорошо растворимое в воде.

Получить селенистую кислоту (SeO 2 + H 2 O → H 2 SeO 3) ничуть не сложнее, чем сернистую. А действуя на нее сильным окислителем (например, HClO 3), получают селеновую кислоту H 2 SeO 4 , почти такую же сильную, как серная.

Спросите любого химика: «Какого цвета селен ?» - он наверняка ответит, что серого. Но элементарный опыт способен опровергнуть это правильное в принципе утверждение.

Через склянку с селенистой кислотой пропустим сернистый газ (он, если помните, хороший восстановитель), и начнется красивая реакция. Сначала раствор пожелтеет, затем станет оранжевым, потом кровавокрасным. Если исходный раствор был слабым, то эта окраска может сохраняться долго - получен коллоидный аморфный селен. Если же концентрация кислоты была достаточно высокой, то почти сразу же после начала реакции в осадок начнет выпадать тонкий порошок. Его окраска - от ярко-красной до густо-бордовой, такой, как у черных гладиолусов. Это элементный селен, аморфный порошкообразный элементный селен.

Его можно перевести в стеклообразное состояние, нагрев до 220°С, а затем резко охладив. Даже если цвет порошка был ярко-красным, стеклообразный селен будет почти черного цвета, красный оттенок заметен лишь на просвет.

Можно сделать и другой опыт. Тот же красный порошок (немного!) размешайте в колбе с сероуглеродом. На скорое растворение не рассчитывайте - растворимость аморфного селена в CS 2 0,016% при нуле и чуть больше (0,1%) при 50°С. Присоедините к колбе обратный холодильник и кипятите содержимое примерно 2 часа. Затем образующуюся светло-оранжевую с зеленоватым оттенком жидкость медленно испарите в стакане, накрытом несколькими слоями фильтровальной бумаги, и вы получите еще одну разновидность селена - кристаллический моноклинный селен.

Кристаллы-клинышки мелкие, красного или оранжево-красного цвета. Они плавятся при 170°С, но если нагревать медленно, то при 110-120°С кристаллы изменятся: альфа-моноклинный селен превратится в бета-моноклинный - темно-красные широкие короткие призмы. Таков селен. Тот самый селен, который обычно серый.

Серый селен (иногда его называют металлическим) имеет кристаллы гексагональной системы. Его элементарную ячейку можно представить как несколько деформированный куб. При правильном кубическом строении шесть соседей каждого атома удалены от него на одинаковое расстояние, селен же построен чуть-чуть иначе. Все его атомы как бы нанизаны на спиралевидные цепочки, и расстояния между соседними атомами в одной цепи примерно в полтора раза меньше расстояния между цепями. Поэтому элементарные кубики искажены.

Плотность серого селена 4,79 г/см3, температура плавления 217°С, а кипения 684,8-688°С. Раньше считали, что и серый селен существует в двух модификациях - SeA и SeB, причем последняя лучше проводит тепло и электрический ток; последующие опыты опровергли эту точку зрения.

Приступая к опытам, нужно помнить, что селен и все его соединения ядовиты. Экспериментировать с селеном можно только под тягой, соблюдая все правила техники безопасности. «Многоликость» селена лучше всего объясняется с позиций сравнительно молодой науки о неорганических полимерах.


Полимерология селена

Эта наука еще так молода, что многие основные представления не сформировались в ней достаточно четко. Нет даже общепринятой классификации неорганических полимеров. Известный советский химик действительный член Академии наук СССР В. В. Коршак предлагал делить все неорганические полимеры прежде всего на гомоцепные и гетероцепные. Молекулы первых составлены из атомов одного вида, а вторых - из атомов двух или нескольких элементов.

Элементный селен (любая модификация!) - это гомоцепной неорганический полимер. Естественно, что лучше всего изучен термодинамически устойчивый серый селен. Это полимер с винтообразными макромолекулами, уложенными параллельно. В цепях атомы связаны ковалентно, а молекулы-цепи объединены молекулярными силами и частично - металлической связью.

Даже расплавленный или растворенный селен не «делится» на отдельные атомы. При плавлении селена образуется жидкость, состоящая опять-таки из цепей и замкнутых колец. Есть восьмичленные кольца Se 8 ,

есть и более многочисленные «объединения». То же и в растворе. Попытки определить молекулярный вес селена, растворенного в сероуглероде, дали цифру 631,68. Это значит, что и здесь селен существует в виде молекул, состоящих из восьми атомов. Видимо, это утверждение справедливо и для других растворов.

Газообразный селен существует в виде разрозненных атомов только при температуре выше 1500°С, а при более низких температурах селеновые пары состоят из двух-, шести- и восьмичленных «содружеств». До 900°С преобладают молекулы состава Se6, после 1000°C - Se 2 .

Что же касается красного аморфного селена, то он тоже полимер цепного строения, но малоупорядоченной структуры. В температурном интервале 70-90°C он приобретает каучукоподобные свойства, переходя в высокоэластическое состояние. Моноклинный селен, по-видимому, более упорядочен, чем аморфный красный, но уступает кристаллическому серому.

Все это выяснено в последние десятилетия, и не исключено, что по мере развития науки о неорганических полимерах многие величины и цифры еще будут уточняться. Это относится не только к селену, но и к сере, теллуру, фосфору - ко всем элементам, существующим в виде гомоцепных полимеров.


История селена, рассказанная его первооткрывателем

История открытия элемента № 34 небогата событиями. Диспутов и столкновений это открытие не вызвало, и не мудрено: селен открыт в 1817 г. авторитетнейшим химиком своего времени Йенсом Якобом Берцелиусом. Сохранился рассказ самого Берцелиуса о том, как произошло это открытие.

«Я исследовал в содружестве с Готлибом Ганом метод, который применяют для производства серной кислоты в Грипсхольме. Мы обнаружили в серной кислоте осадок, частью красный, частью светлокоричневый. Этот осадок, опробованный с помощью паяльной трубки, издавал слабый редечный запах и образовывал свинцовый королек. Согласно Клапроту, такой запах служит указанием на присутствие теллура . Ган заметил при этом, что на руднике в Фалюне, где собирается сера, необходимая для производства кислоты, также ощущается подобный запах, указывающий на присутствие теллура. Любопытство, вызванное надеждой обнаружить в этом коричневом осадке новый редкий металл, заставило меня исследовать осадок. Приняв намерение отделить теллур, я не смог, однако, открыть в осадке никакого теллура. Тогда я собрал все, что образовалось при получении серной кислоты путем сжигания фалюнской серы за несколько месяцев, и подверг полученный в большом количестве осадок обстоятельному исследованию. Я нашел, что масса (то есть осадок) содержит до сих пор неизвестный металл, очень похожий по своим свойствам на теллур. В соответствии с этой аналогией я назвал новое тело селеном (Selenium) от греческого (луна), так как теллур назван по имени Tellus - нашей планеты».

Как Луна - спутник Земли, так и селен - спутник теллура.


Первые применения селена

«Из всех областей применения селена самой старой и, несомненно, самой обширной является стекольная и керамическая промышленность».

Эти слова взяты из «Справочника по редким металлам», выпущенного в 1965 г. Первая половина этого утверждения бесспорна, вторая вызывает сомнения. Что значит «самой обширной»? Вряд ли эти слова можно отнести к масштабам потребления селена той или иной отраслью. Вот уже на протяжении многих лет главный потребитель селена - полупроводниковая техника. Тем не менее роль селена в стеклоделии достаточно велика и сейчас. Селен, как и марганец , добавляют в стеклянную массу, чтобы обесцветить стекло, устранить зеленоватый оттенок, вызванный примесью соединений железа . Соединение селена с кадмием - основной краситель при получении рубинового стекла; этим же веществом придают красный цвет керамике и эмалям.

В сравнительно небольших количествах селен используют в резиновой промышленности - как наполнитель, и в сталелитейной - для получения сплавов мелкозернистой структуры. Но не эти применения элемента № 34 главные, не они вызывали резкое увеличение спроса на селен в начале 50-х годов. Сравните цену селена в 1930 и 1956 г.: 3,3 доллара за килограмм и 33 соответственно. Большинство редких элементов за это время стали дешевле, селен же подорожал в 10 раз! Причина в том, что как раз в 50-е годы стали широко использоваться полупроводниковые свойства селена.

Выпрямитель, фотоэлемент, солнечная батарея

Обычный серый селен обладает полупроводниковыми свойствами, это полупроводник p-типа, т. е. проводимость в нем создается главным образом не электронами, а «дырками». И что очень важно, полупроводниковые свойства селена ярко проявляются не только в идеальных монокристаллах, но и в поликристаллических структурах.

Но, как известно, с помощью полупроводника только одного типа (неважно какого) электрический ток нельзя ни усилить, ни выпрямить. Переменный ток превращается в постоянный на границе полупроводников р- и n-типов, когда осуществляется так называемый р-п-переход. Поэтому в селеновом выпрямителе вместе с селеном часто работает сульфид кадмия - полупроводник n-типа. А делают селеновые выпрямители так.

На никелированную железную пластинку наносят тонкий, 0,5-0,75миллиметровый, слой селена. После термообработки сверху наносят еще и «барьерный слой» сульфида кадмия. Теперь этот «сэндвич» может пропускать ноток электронов практически лишь в одном направлении: от железной пластины к «барьеру» и через «барьер» на уравновешивающий электрод. Обычно эти «сэндвичи» делают в виде дисков, из которых собирают собственно выпрямитель. Селеновые выпрямители способны преобразовать ток в тысячи ампер.

Другое практически очень важное свойство селена-полупроводника - его способность резко увеличивать электропроводность под действием света. На этом свойстве основано действие селеновых фотоэлементов и многих других приборов.

Следует иметь в виду, что принципы действия селеновых и цезиевых фотоэлементов различны. Цезий под действием фотонов света выбрасывает дополнительные электроны. Это явление внешнего фотоэффекта. В селене же под действием света растет число дырок, его собственная электропроводность увеличивается. Это внутренний фотоэффект.

Влияние света на электрические свойства селена двояко. Первое - это уменьшение его сопротивления на свету. Второе, не менее важное - фотогальванический эффект, т. е. непосредственное преобразование энергии света в электроэнергию в селеновом приборе. Чтобы вызвать фото- гальванический эффект, нужно, чтобы энергия фотонов была больше некоей пороговой, минимальной для данного фотоэлемента, величины.

Простейший прибор, в котором используется именно этот эффект, - экспонометр, которым мы пользуемся при фотосъемке, чтобы определить диафрагму и выдержку. Прибор реагирует на освещенность объекта съемки, а все прочее за нас уже сделали (пересчитали) те, кто конструировал экспонометр. Селеновые экспонометры распространены весьма широко - ими пользуются и любители и профессионалы.

Более сложные устройства того же типа - солнечные батареи, работающие на Земле и в космосе. Принцип действия их тот же, что у экспонометра. Только в одном случае образующийся ток лишь отклоняет тоненькую стрелку, а в другом питает целый комплекс бортовой аппаратуры искусственного спутника Земли.


Копию снимает селеновый барабан

В 1938 г. американский инженер Карлсон запатентовал метод «селеновой фотографии», который сейчас называют ксерографией, или электрографией. Это, пожалуй, самый быстрый способ получения высококачественных черно-белых копий с любого оригинала - будь то чертеж, гравюра или оттиск журнальной статьи. Важно, что этим способом можно получать (и получать быстро) десятки и сотни копий, а если оригинал бледен, копни можно сделать намного более контрастными. И не нужно специальной бумаги - ксерографическую копию можно сделать даже на бумажной салфетке.

Электрографические машины сейчас выпускают во многих странах, принцип их действия повсюду один и тот же. В основе их действия - уже упоминавшийся внутренний фотоэффект, присущий селену. Главная деталь электрографической машины - металлический барабан, очень гладкий, обработанный по высшему 14-му классу чистоты и сверху покрытый слоем селена, осажденного в вакууме.

Действует эта машина таким образом. Оригинал, с которого предстоит снять копию, вставляют в приемное окно. Подвижные валики переносят его под яркий свет люминесцентных ламп, а система, состоящая из зеркал и фотообъектива, передает изображение на селеновый барабан. Тот уже подготовлен к приему: рядом с барабаном установлен коротрон - устройство, создающее сильное электрическое поле. Попадая в зону действия коротрона, часть селенового барабана заряжается статическим электричеством определенного знака. Но вот на селен спроектировали изображение, и освещенные отраженные светом участки сразу разрядились - электропроводность выросла и заряды ушли. Но не отовсюду. В тех местах, которые остались в тени благодаря темным линиям и знакам, заряд сохранился. Этот заряд в процессе «проявления» притянет частицы тонкодисперсного красителя, тоже уже подготовленного.

Перемешиваясь в сосуде со стеклянным бисером, частички красителя тоже, как и барабан, приобрели заряды статического электричества. Но их заряды противоположного знака; обычно барабан получает положительные заряды, а краситель - отрицательные. Положительный же заряд, но более сильный, чем на барабане, получает и бумага, на которую нужно перенести изображение.

Когда ее плотно прижмут к барабану (разумеется, это делается не вручную, до барабана вообще нельзя дотрагиваться), более сильный заряд перетянет к себе частички красителя, и электрические силы будут удерживать краситель на бумаге. Конечно, рассчитывать на то, что эти силы будут действовать вечно или по крайней мере достаточно долго, не приходится. Поэтому последняя стадия получения электрографических копий - термообработка, происходящая тут же, в машине.

Применяемый краситель способен плавиться и впитываться бумагой. После термообработки он надежно закрепляется на листе (его трудно стереть резинкой). Весь процесс занимает не больше 1,5 минуты. А пока шла термообработка, селеновый барабан успел повернуться вокруг своей оси и специальные щетки сняли с него остатки старого красителя. Поверхность барабана готова к приему нового изображения.