Взаимное расположение двух плоскостей в пространстве. Плоскость в пространстве. Взаимное расположение плоскостей. Взаимное расположение прямых в пространстве

Вопрос 7.

Две плоскости в пространстве могут быть либо взаимно параллельными, и в частном случае совпадая друг с другом, либо пересекающимися. Взаимно перпендикулярные плоскости представляют собой частный случай пересекающихся плоскостей и будут рассмотрены ниже.

Параллельные плоскости. Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. При решении различных задач часто приходится через данную точку А проводить плоскость β , параллельную данной плоскости α .

На рис. 81 плоскость α задана двумя пересекающимися прямыми а и b. Искомая плоскость β определена прямыми а1 и b1 , соответственно параллельными a и b и проходящими через заданную точку A1.

Пересекающиеся плоскости. Линией пересечения двух плоскостей является прямая, для построения которой достаточно определить две точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей.

Перед тем как рассмотреть построение линии пересечения двух плоскостей, разберем важную и вспомогательную задачу: найдем точку К пересечения прямой общего положения с проецирующей плоскостью.

Пусть например, даны прямая а и горизонтально проецирующая плоскость α (рис 82). Тогда горизонтальная проекция К1 искомой точки должна одновременно лежать на горизонтальной проекции α1 плоскости α и на горизонтальной проекции а1 прямой а, т.е. в точке пересечения а1 с α1 (рис 83) . Фронтальная проекция К2 точки К расположена на линии проекционной связи и на фронтальной проекции а2 прямой а.

А теперь разберем один из частных случаев пересекающихся плоскостей, когда одна из них – проецирующая.

На рис. 84 приведены плоскость общего положения, заданная треугольником АВС, и горизонтально проецирующая плоскость α. Найдем две общие точки для этих двух плоскостей. Очевидно, этими общими точками для плоскостей ∆АВС и α будут точки пересечения сторон АВ и ВС треугольника АВС с проецирующей плоскостью α . Построение таких точек D и E как на пространственном чертеже (рис 84) , так и на эпюре (рис 85) не вызывает затруднений после разобранного выше примера.

Соединяя одноименные проекции точек D и Е, получим проекции линии пересечения плоскости ∆ АВС и плоскости α.

Таким образом, горизонтальная проекция D1Е1 линии пересечения заданных плоскостей совпадает с горизонтальной проекцией проецирующей плоскость α – с ее горизонтальными следом α1.

Рассмотрим теперь общий случай. Пусть в пространстве заданы две плоскости общего положения α и β (рис 86). Для построения линии их пересечения необходимо, как отмечалось выше, найти две точки, общие обеим плоскостям.

Для определения этих точек заданные плоскости пересекают двумя вспомогательными плоскостями. В качестве таких плоскостей целесообразнее взять проецирующие плоскости и, в частности, плоскости уровня. На рис. 86 первая вспомогательная плоскость уровня γ каждую из данных плоскостей пересекает по горизонталям h и h1 , которые определяют точку 1, общую для плоскостей α и β. Эта точка определяется пересечением горизонталей h2 и h3, по которым вспомогательная плоскость δ пересекает каждую из данных плоскостей.

Опр. Две плоскости в пространстве называются параллельными, если они не пересекаются, в противном случаи они пересекаются.

Теорема1: Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Доказательство:

Пусть и - данные плоскости, а1 и а2 - прямые в плоскости, пересекающиеся в точке А, в1 и в2 - соответственно параллельные им прямые в

плоскости. Допустим, что плоскости и не параллельны, т.е. пересекаются по некоторой прямой с. По теореме прямые а1 и а2, как параллельные прямым в1и в2, параллельны плоскости, и поэтому они не

пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости через точку А проходят две прямые (а1 и а2) , параллельные прямой с. Но это невозможно по аксиоме параллельных. Мы пришли к противоречию ЧТД.

Перпендикулярные плоскости: Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым.

Теорема2: Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Доказательство:

Пусть - плоскость, в -перпендикулярная ей прямая, - плоскость, проходящая через прямую в, с - прямая, по которой пересекаются плоскости и. Докажем, что плоскости и перпендикулярны. Проведем в плоскости через точку пересечения прямой в с плоскостью прямую а,

перпендикулярную прямой с. Проведем через прямые а и в плоскость. Она перпендикулярна прямой с, т.к. прямая с перпендикулярна прямым а и в. Т. к. прямые а и в перпендикулярны, то плоскости и перпендикулярны. ч.т.д.

42. Нормальное уравнение плоскости и его свойства

    Нормальное (нормированное) уравнение плоскости

в векторной форме:

где - единичный вектор,- расстояние П. от начала координат. Уравнение (2) может быть получено из уравнения (1) умножением на нормирующий множитель

(знаки ипротивоположны).

43. Уравнения прямой линии в пространстве: Общие уравнения, каноничекие и параметрические уравнения.

Канонические уравнения:

Выведем уравнение прямой, проходящей через данную точку и параллельную данному направляющему вектору. Заметим, что точкалежит на этой прямой тогда и только тогда, когда векторыиколлинеарны. Это означает, что координаты этих векторов пропорциональны:

Эти уравнения называют каноническими. Заметим, что одна или две координаты направляющего вектора могут оказаться равными нулю. Но мы воспринимаем это как пропорцию: мы понимаем как равенство.

Общие уравнения:

(A1x+B1y+C1z+D1=0

(A2x+B2y+C2z+D2=0

Где коэффиценты А1-С1 не пропорциональны A2-C2,что равносильно ее заданию как линии пересечения плоскостей

Параметрические:

Откладывая от точки векторыдля различных значений, коллинеарные направляющему вектору, мы будем получать на конце отложенных векторов различные точки нашей прямой. Из равенстваследует:

Переменную величину называют параметром. Поскольку для любой точки прямой найдется соответствующее значение параметра и поскольку различным значениям параметра соответствуют различные точки прямой, то существует взаимно однозначное соответствие между значениями параметра и точками прямой. Когда параметрпробегает все действительные числа отдо, соответствующая точкапробегает всю прямую.

44. Понятие линейного пространства. Аксиомы. Примеры линейных пространств

Пример линейного пространства – множество всех геометрических векторов.

Линейное , иливекторное пространство надполемP - этонепустое множествоL , на котором введеныоперации

сложения, то есть каждой паре элементов множества ставится в соответствие элемент того же множества, обозначаемыйи

умножения на скаляр(то есть элемент поляP ), то есть любому элементу и любому элементуставится в соответствие элемент из, обозначаемый.

При этом на операции накладываются следующие условия:

Для любых (коммутативность сложения );

Для любых (ассоциативность сложения );

существует такой элемент , чтодля любого(существование нейтрального элемента относительно сложения ), в частности L не пусто;

для любого существует такой элемент, что(существование противоположного элемента ).

(ассоциативность умножения на скаляр );

(умножение на нейтральный (по умножению) элемент поля P сохраняет вектор ).

(дистрибутивность умножения на вектор относительно сложения скаляров );

(дистрибутивность умножения на скаляр относительно сложения векторов ).

Элементы множества L называютвекторами , а элементы поляP -скалярами . Свойства 1-4 совпадают с аксиомами абелевой группы.

Простейшие свойства

Векторное пространство является абелевой группойпо сложению.

Нейтральный элемент является единственным, что вытекает из групповых свойств.

для любого .

Для любого противоположный элементявляется единственным, что вытекает из групповых свойств.

для любого .

для любых и.

для любого .

Элементы линейного пространства называются векторами. Пространство называется действительным, если в нем оперция умножения векторов на число определена только для действительных числе, и комплексным, если эта оперкция определана только для комплексных чисел.

45. Базис и размерност линейного прорстранства, связь между ними.

Конечная сумма вида

называется линейной комбинацией элементов с коэффициентами.

Линейная комбинация называется нетривиальной, если хотя бы один из её коэффициентов отличен от нуля.

Элементы называются линейно зависимыми, если существует их нетривиальная линейная комбинация, равная θ. В противном случае эти элементы называются линейно независимыми.

Бесконечное подмножество векторов из L называется линейно зависимым, если линейно зависимо его некоторое конечное подмножество, и линейно независимым, если любое его конечное подмножество линейно независимо.

Число элементов (мощность) максимального линейно независимого подмножества пространства не зависит от выбора этого подмножества и называется рангом, или размерностью, пространства, а само это подмножество - базисом(базисом Га́меля или линейным базисом). Элементы базиса также называют базисными векторами. Свойства базиса:

Любые n линейно независимых элементов n-мерного пространства образуют базис этого пространства.

Любой вектор можно представить (единственным образом) в виде конечной линейной комбинации базисных элементов:

46. Координты вектора в данном базисе. Линейные операции с векторами в координатной форме

п.4. Линейные операции с векторами в координатной форме записи.

Пусть – базиспространстваи– два его произвольных вектора. Пустьи–записьэтихвектороввкоординатнойформе. Пусть, далее,– произвольное действительное число. В этих обозначениях имеет место следующая теорема.

Теорема. (О линейных операциях с векторами в координатнойформе.)

Пусть Ln – произвольное n-мерное пространство, B = (e1,….,en) - фиксированный базис в нем. Тогда всякому вектору x пренадлежащему Ln взаимно однозначно соответствует столбец его координат в этом базисе.

Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей:
пусть заданы две плоскости Q 1 и Q 2:

А 1 х +B 1 y + C 1 z + D 1 =0

A 2 x + B 2 y + C 2 z + D 2 =0

Под углом между плоскостями понимается один из двугранных углов, образованных этими плоскостями.

Если плоскости перпендикулярны, то таковы же их нормали, т.е. . Но тогда ,т.е.

A 1 A 2 + B 1 B 2 + C 1 C 2 = 0. Полученное равенство есть условие перпендикулярности двух плоскостей.

Если плоскости параллельны, то будут параллельны и их нормали. Но тогда, как известно, координаты векторов пропорциональны: . Это и есть условие параллельности двух плоскостей.

Взаимное расположение прямых.

Угол между прямыми. Условия параллельности и перпендикулярности прямых.

Пол углом между этими прямыми понимают угол между направляющими векторами S 1 и S 2 .

Для нахождения острого угла между прямыми L 1 и L 2 числитель правой части формулы следует взять по модулю.

Если прямые L 1 и L 2 перпендикулярны , то в этом и только в этом случае имеем cos =0. следовательно, числитель дроби = 0, т.е. =0.

Если прямые L 1 и L 2 параллельны, то параллельны их направляющие векторы S 1 и S 2 . следовательно, координаты этих векторов пропорциональны: .

Условие, при котором две прямые лежат в одной плоскости:

=0.

При выполнении этого условия прямые либо лежат в одной плоскости, то есть либо пересекаются.

Взаимное расположение прямой и плоскости.

Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости.

Пусть плоскость задана уравнением Ах +By + Cz + D=0, а прямая L уравнениями . Углом между прямой и плоскостью называется любой из двух смежных углов, образованных прямой и ее проекцией на плоскость. Обозначим через угол между плоскостью и прямой.

.

Если прямая L параллельна плоскости Q, то векторы n и S перпендикулярны, а потому , т.е.

0 является условием параллельности прямой и плоскости.

Если прямая L перпендикулярна плоскости Q, то векторы n и S параллельны. Поэтому равенства

Являются условиями перпендикулярности прямой и плоскости.

Пересечение прямой с плоскостью. Условие принадлежности прямой плоскости :

Рассмотрим прямую и плоскость Ах +By + Cz + D=0.

Одновременное выполнение равенств:

Ах 0 +By 0 + Cz 0 + D=0 являются условием принадлежности прямой плоскости.

Эллипс.

Геометрическое место точек, сумма расстояний от которых до двух фиксированных точек плоскости (обычно называемых фокусных) постоянна, называется эллипсом.

Если оси координат расположены так, что Ox проходит через фокусы F 1 (C,0) и F 2 (-C,0), а О(0,0) совпадает с серед отрезка F 1 F 2 , то по F 1 М+F 2 M получаем:

каноническое ур-ие эллипса ,

b 2 =-(с 2 -a 2).

а и b- полуоси эллипса., а-большая, b-меньшая.

Эксцентриситет . , (если а>b)

(если а

Эксцентриситет характеризует выпуклость эллипса.

У эллипса эксцентриситет находится: 0 .

Случай =0 возникает только тогда, когда с=0, а это есть случай окружности – это эллипс с нулевым эксцентриситетом.

Директрисы (D) Геометрическое место точек, отношение расстояний от которых до точки эллипса к расстоянию от этой точки эллипса до фокуса постоянно и равно величине , называется директрисами. .

Примечание: у окружности нет директрисы.

Гипербола.

Геометрическое место точек, модуль разности расстояний от которых до двух фиксированных точек плоскости постоянна, называется гиперболой.

Каноническое уравнение гиперболы:
, где .

Гипербола есть линия второго порядка.

Гипербола имеет 2 асимптоты: и

Гипербола называется равносторонней , если ее полуоси равны. (а=b). Каноническое уравнение:

Эксцентриситет – отношение расстояния между фокусами к величине действительной оси гиперболы:

Так как для гиперболы с>а, то эксцентриситет гиперболы >1.

Эксцентриситет характеризует форму гиперболы: . Эксцентриситет равносторонней гиперболы равен равен .

Директрисы – прямые .

Фокальные радиусы : и .

Есть гиперболы, которые имеют общие асимптоты. Такие гиперболы называются сопряженными.

Парабола.

Парабола – множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой.

Расстояние от фокуса до директрисы – параметр параболы (p>0).-полуфокальный диаметр.

Парабола есть линия второго порядка.

М(х,у) – произвольная точка параболы. Соединим точку М с F, проведем отрезок MN перпендикулярно директрисе. Согласно определению параболы MF=MN. По формуле расстояния между 2 точкам находим: => = =>

=>

Каноническое уравнение параболы:
y 2 = 2px.

Эллипсоид.

Исследуем поверхность, заданную уравнением:

Рассмотрим сечения поверхности с плоскостями, параллельными плоскости xOy. Уравнения таких плоскостей: z=h,где h – любое число. Линия, получаемая в сечении, определяется двумя ур-ниями:

Исследуем поверхность:

А) если то Линия пересечения поверхности с плоскостямиz=h не существует.

Б) если , линия пересечения вырождается в две точки (0,0,с), и (0,0,-с). Плоскости z = c, z = - c касается данной поверхности.

В) если , то уравнения можно переписать в виде: , как видно, линия пересечения есть эллипс с полуосями а1 = , b1 = . При этом, чем меньше h, тем больше полуоси. При н=0 они достигают своих наибольших значений. а1=а, b1=b. Уравнения примут вид:

Рассмотренные сечения позволяют изобразить поверхность как замкнутую овальную поверхность. Поверхность называется эллипсоидами., если какие-либо полуоси равны, трехосный эллипсоид превращается в эллипсоид вращения, а если а=b=c, то в сферу.

Гиперболоид и конус.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Для двух плоскостей возможны следующие варианты взаимного расположения: они параллельны или пересекаются по прямой линии.

Из стереометрии известно, что две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это условие называют признаком параллельности плоскостей .

Если две плоскости являются параллельными, то они пересекают какую-то третью плоскость по параллельным прямым. Исходя из этого у параллельных плоскостей Р и Q их следы являются параллельными прямыми (рис. 50).

В случае, когда две плоскости Р и Q параллельны оси х , их горизонтальные и фронтальные следы при произвольном взаимном расположении плоскостей будут параллельными оси х, т. е. взаимно параллельными. Следовательно, при таких условиях параллельность следов является достаточным признаком, характеризующим параллельность самих плоскостей. Для параллельности подобных плоскостей нужно убедиться в параллельности и профильных их следов P w и Q w . Плоскости Р и Q на рисунке 51 параллельны, а на рисунке 52 они не параллельны, несмотря на то что P v || Q v , и P h у || Q h .

В случае, когда плоскости параллельны, горизонтали одной плоскости параллельны горизонталям другой. Фронтали одной плоскости при этом должны быть параллельными фронталям другой, так как у этих плоскостей параллельны одноименные следы.

Для того чтобы построить две плоскости, пересекающиеся между собой, необходимо найти прямую, по которой пересекаются две плоскости. Для построения этой прямой достаточно найти две точки, принадлежащие ей.

Иногда, когда плоскость задана следами, найти данные точки легко с помощью эпюра и без дополнительных построений. Здесь известно направление определяемой прямой, и ее построение основывается на использовании одной точки на эпюре.



Прямая, параллельная плоскости

Может быть несколько положений прямой относительно некоторой плоскости.

Рассмотрим признак параллельности прямой и плоскости. Прямая является параллельной плоскости, когда она параллельна любой прямой, лежащей в этой плоскости. На рисунке 53 прямая АВ параллельна плоскости Р , так как она параллельна прямой MN , которая лежит в этой плоскости.

Когда прямая параллельна плоскости Р , в этой плоскости через какую-либо ее точку можно провести прямую, параллельную данной прямой. Например, на рисунке 53 прямая АВ параллельна плоскости Р . Если через точку М , принадлежащую плоскости Р , провести прямую NM , параллельную АВ , то она будет лежать в плоскости Р . На том же рисунке прямая CD не параллельна плоскости Р , потому что прямая KL , которая параллельна CD и проходит через точку К на плоскости Р , не лежит в данной плоскости.

Прямая, пересекающая плоскость

Для нахождения точки пересечения прямой и плоскости необходимо построить линии пересечения двух плоскостей. Рассмотрим прямую I и плоскость Р (рис. 54).

Рассмотрим построение точки пересечения плоскостей.

Через некоторую прямую I необходимо провести вспомогательную плоскость Q (проецирующую). Линия II определяется как пересечение плоскостей Р и Q . Точка К, которую и требуется построить, находится в пересечение прямых I и II. В этой точке прямая I пересекает плоскость Р .

В данном построении основным моментом решения является проведение вспомогательной плоскости Q , проходящей через данную прямую. Можно провести вспомогательную плоскость общего положения. Однако показать на эпюре проецирующую плоскость, используя данную прямую, проще, чем провести плоскость общего положения. При этом через любую прямую можно провести проецирующую плоскость. На основании этого вспомогательная плоскость выбирается проецирующей.