Определить нормальное ускорение. Нормальное ускорение. Задача на определение тангенциального ускорения

Ускорение точки для всех 3-х способов ускорения движения

Ускорение точки характеризует быстроту изменения модуля и направления скорости точки.

1. Ускорение точки при задании ее движения векторным способом

вектор ускорения точки равен первой производной от скорости или второй производной от радиуса-вектора точки по времени. Вектор ускорения направлен в сторону вогнутости кривой

2. Ускорение точки при задании ее движения координатным способом

Модуль и направление вектора ускорения определяются из соотношений:

3. Определение ускорения при задании ее движения естественным способом

Естественные оси и естественный трехгранник

Естественные оси. Кривизна характеризует степень искривленности (изогнутости) кривой. Так, окружность имеет постоянную кривизну, которую измеряют величиной K, обратной радиусу,

Чем больше радиус, тем меньше кривизна, и наоборот. Прямую линию можно рассматривать как окружность с бесконечно большим радиусом и кривизной, равной нулю. Точка представляет окружность радиусом R = 0 и имеет бесконечно большую кривизну.

Произвольная кривая имеет переменную кривизну. В каждой точке такой кривой можно подобрать окружность радиусом, кривизна которой равна кривизне кривой в данной точке М (рис. 9.2). Величина называется радиусом кривизны в данной точке кривой. Ось, направленная по касательной в сторону движения, и ось, направленная по радиусу к центру кривизны и называемая нормалью, образуют естественные оси координат.

Нормальное и касательное ускорение точки

При естественном способе задания движения ускорение точки равно геометрической сумме двух векторов, один из которых направлен по главной нормали и называется нормальным ускорением, а второй направлен по касательной и называется касательным ускорением точки.

Проекция ускорения точки на главную нормаль равна квадрату модуля скорости тоски, деленному на радиус кривизны траектории в соответствующей точке. Нормальное ускорение точки всегда направлено к центру кривизны траектории и равно по модулю этой проекции.

Изменение скорости по модулю характеризуется касательным (тангенциальным) ускорением.

т.е. проекция ускорения точки на касательную равна второй производной от дуговой координаты точки по времени или первой производной от алгебраической величины скорости точки по времени.

Эта проекция имеет знак плюс, если направления касательного ускорения и орта совпадают, и знак минус, если они противоположны.

Таким образом, в случае естественного способа задания движения, когда известны траектория точки а, следовательно, ее радиус кривизны? в любой точке и уравнение движения, можно найти проекции ускорения точки на естественные оси:

Если a > 0 и > 0 или a < 0 и < 0, то движение ускоренное и вектор а направлен в сторону вектора скорости. Если а < 0 и > 0 или а > 0 и < 0, то движение замедленное и вектор а направлен в сторону, противоположную вектору скорости

Частные случаи.

1. Если точка движется прямолинейно и неравномерно, то = , и,следовательно, = 0, a = a.

2. Если точка движется прямолинейно и равномерно, = 0, a = 0 и a = 0.

3. Если точка движется по криволинейной траектории равномерно, то а = 0 и а = . При равномерном криволинейном движении точки закон движения имеет вид s = t. Положительное направление отсчета целесообразно назначать в задачах в зависимости от конкретных условий. В случае, когда 0 = 0, получаем = gt и. Часто в задачах используется (при падении тела с высоты Н без начальной скорости) формула

Вывод: нормальное ускорение существует лишь при криволинейном

32. Классификация движения точки по её ускорению

если в течение некоторого промежутка времени нормальное и касательное ускорения точки равны нулю, то в течение этого промежутка не измениться ни направление, ни модуль скорости, т.е. точка движется прямолинейно равномерно и ее ускорение равно нулю.

если в течение некоторого промежутка времени не равно нулю нормальное ускорение и равно нулю касательное ускорение точки, то происходит изменение направления скорости без изменения ее модуля, т.е. точка движется криволинейно равномерно и модуль ускорения.

Если в отдельный момент времени, то точка не движется равномерно, а в этот момент времени модуль ее скорости имеет максимум, минимум или наименьшую быстроту монотонного изменения.

если в течение некоторого промежутка времени равно нулю нормальное ускорение точки и не равно нулю касательное, то не изменяется направление скорости, а изменяется ее модуль, т.е. точка движется по прямой неравномерно. Модуль ускорения точки в этом случае

При этом если направление векторов скорости и совпадают, то движение точки ускоренное, а если не совпадают, то движение точки замедленное.

Если в некоторый момент времени, то точка не движется прямолинейно, а проходит точку перегиба траектории или модуль ее скорости обращается в нуль.

Если в течение некоторого промежутка времени ни нормальное, ни касательное ускорения не равны нулю, то изменяется как направление, так и модуль ее скорости, т.е. точка совершает криволинейное неравномерное движение. Модуль ускорения точки

при этом если направление векторов скорости и совпадают, то движение ускоренное, а если противоположны, то движение замедленное.

Если модуль касательного ускорения постоянен, т.е. , то модуль скорости точки изменяется пропорционально времени, т.е. точка совершает равнопеременное движение. И тогда

Формула скорости равнопеременного движения точки;

Уравнение равнопеременного движения точки

Кинематика точки, кинематика твердого тела, поступательное движение, вращательное движение, плоскопараллельное движение, теорема о проекциях скоростей, мгновенный центр скоростей, определение скорости и ускорений точек плоского тела, сложное движение точки

Содержание

Кинематика твердого тела

Чтобы однозначно определить положение твердого тела, нужно указать три координаты (x A , y A , z A ) одной из точек A тела и три угла поворота. Таким образом, положение твердого тела определяется шестью координатами. То есть твердое тело имеет шесть степеней свободы.

В общем случае, зависимость координат точек твердого тела относительно неподвижной системы координат определяется довольно громоздкими формулами. Однако скорости и ускорения точек определяются довольно просто. Для этого нужно знать зависимость координат от времени одной, произвольным образом выбранной, точки A и вектора угловой скорости . Дифференцируя по времени, находим скорость и ускорение точки A и угловое ускорение тела :
; ; .
Тогда скорость и ускорение точки тела с радиус вектором определяется по формулам:
(1) ;
(2) .
Здесь и далее, произведения векторов в квадратных скобках означают векторные произведения.

Отметим, что вектор угловой скорости одинаков для всех точек тела . Он не зависит от координат точек тела. Также вектор углового ускорения одинаков для всех точек тела .

См. вывод формул (1) и (2) на странице: Скорость и ускорение точек твердого тела > > >

Поступательное движение твердого тела

При поступательном движении, угловая скорость равна нулю. Скорости всех точек тела равны. Любая прямая, проведенная в теле, перемещается, оставаясь параллельной своему начальному направлению. Таким образом, для изучения движения твердого тела при поступательном движении, достаточно изучить движение одной любой точки этого тела. См. раздел .

Равноускоренное движение

Рассмотрим случай равноускоренного движения. Пусть проекция ускорения точки тела на ось x постоянна и равна a x . Тогда проекция скорости v x и x - координата этой точки зависят от времени t по закону:
v x = v x0 + a x t ;
,
где v x0 и x 0 - скорость и координата точки в начальный момент времени t = 0 .

Вращательное движение твердого тела

Рассмотрим тело, которое вращается вокруг неподвижной оси. Выберем неподвижную систему координат Oxyz с центром в точке O . Направим ось z вдоль оси вращения. Считаем, что z - координаты всех точек тела остаются постоянными. Тогда движение происходит в плоскости xy . Угловая скорость ω и угловое ускорение ε направлены вдоль оси z :
; .
Пусть φ - угол поворота тела, который зависит от времени t . Дифференцируя по времени, находим проекции угловой скорости и углового ускорения на ось z :
;
.

Рассмотрим движение точки M , которая находится на расстоянии r от оси вращения. Траекторией движения является окружность (или дуга окружности) радиуса r .
Скорость точки :
v = ω r .
Вектор скорости направлен по касательной к траектории.
Касательное ускорение :
a τ = ε r .
Касательное ускорение также направлено по касательной к траектории.
Нормальное ускорение :
.
Оно направлено к оси вращения O .
Полное ускорение :
.
Поскольку векторы и перпендикулярны друг другу, то модуль ускорения :
.

Равноускоренное движение

В случае равноускоренного движения, при котором угловое ускорение постоянно и равно ε , угловая скорость ω и угол поворота φ изменяются со временем t по закону:
ω = ω 0 + ε t ;
,
где ω 0 и φ 0 - угловая скорость и угол поворота в начальный момент времени t = 0 .

Плоскопараллельное движение твердого тела

Плоскопараллельным или плоским называется такое движение твердого тела, при котором все его точки перемещаются параллельно некоторой фиксированной плоскости. Выберем прямоугольную систему координат Oxyz . Оси x и y расположим в плоскости, в которой происходит перемещение точек тела. Тогда все z - координаты точек тела остаются постоянными, z - компоненты скоростей и ускорений равны нулю. Векторы угловой скорости и углового ускорения наоборот, направлены вдоль оси z . Их x и y компоненты равны нулю.

Проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу.
v A cos α = v B cos β .

Мгновенный центр скоростей

Мгновенным центром скоростей называется точка плоской фигуры, скорость которой в данный момент равна нулю.

Чтобы определить положение мгновенного центра скоростей P плоской фигуры, нужно знать только направления скоростей и двух его точек A и B . Для этого через точку A проводим прямую, перпендикулярную направлению скорости . Через точку B проводим прямую, перпендикулярную направлению скорости . Точка пересечения этих прямых есть мгновенный центр скоростей P . Угловая скорость вращения тела:
.


Если скорости двух точек параллельны друг другу, то ω = 0 . Скорости всех точек тела равны друг другу (в данный момент времени).

Если известна скорость какой либо точки A плоского тела и его угловая скорость ω , то скорость произвольной точки M определяется по формуле (1) , которую можно представить в виде суммы поступательного и вращательного движения:
,
где - скорость вращательного движения точки M относительно точки A . То есть скорость, которую имела бы точка M при вращении по окружности радиуса |AM| с угловой скоростью ω , если бы точка A была неподвижной.
Модуль относительной скорости:
v MA = ω |AM| .
Вектор направлен по касательной к окружности радиуса |AM| с центром в точке A .

Определение ускорений точек плоского тела выполняется с применением формулы (2) . Ускорение любой точки M равно векторной сумме ускорения некоторой точки A и ускорения точки M при вращении вокруг точки A , считая точку A неподвижной:
.
можно разложить на касательное и нормальное ускорения:
.
Касательное ускорение направлено по касательной к траектории. Нормальное ускорение направлено из точки M к точке A . Здесь ω и ε - угловая скорость и угловое ускорение тела.

Сложное движение точки

Пусть O 1 x 1 y 1 z 1 - неподвижная прямоугольная система координат. Скорость и ускорение точки M в этой системе координат будем называть абсолютной скоростью и абсолютным ускорением .

Пусть Oxyz - подвижная прямоугольная система координат, скажем, жестко связанная с неким твердым телом, движущимся относительно системы O 1 x 1 y 1 z 1 . Скорость и ускорение точки M в системе координат Oxyz будем называть относительной скоростью и относительным ускорением . Пусть - угловая скорость вращения системы Oxyz относительно O 1 x 1 y 1 z 1 .

Рассмотрим точку, совпадающую, в данный момент времени, с точкой M и неподвижной, относительно системы Oxyz (точка, жестко связанная с твердым телом). Скорость и ускорение такой точки в системе координат O 1 x 1 y 1 z 1 будем называть переносной скоростью и переносным ускорением .

Теорема о сложении скоростей

Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Теорема о сложении ускорений (теорема Кориолиса)

Абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова ускорений:
,
где
- кориолисово ускорение.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Разложение ускорения a (t) {\displaystyle \mathbf {a} (t)\ \ } на тангенциальное и нормальное a n {\displaystyle \mathbf {a} _{n}} ; ( τ {\displaystyle \mathbf {\tau } } - единичный касательный вектор).

Тангенциа́льное ускоре́ние - компонента ускорения , направленная по касательной к траектории движения. Характеризует изменение модуля скорости в отличие от нормальной компоненты , характеризующей изменение направления скорости. Тангенциальное ускорение равно произведению единичного вектора, направленного по скорости движения, на производную модуля скорости по времени. Таким образом, направлено в ту же сторону, что и вектор скорости при ускоренном движении (положительная производная) и в противоположную при замедленном (отрицательная производная).

Обозначается обычно символом, выбранным для ускорения, с добавлением индекса, обозначающего тангенциальную компоненту: a τ {\displaystyle \mathbf {a} _{\tau }\ \ } или a t {\displaystyle \mathbf {a} _{t}\ \ } , w τ {\displaystyle \mathbf {w} _{\tau }\ \ } , u τ {\displaystyle \mathbf {u} _{\tau }\ \ } и т. д.

Иногда используется не векторная форма, а скалярная - a τ {\displaystyle a_{\tau }\ \ } , обозначающая проекцию полного вектора ускорения на единичный вектор касательной к траектории, что соответствует коэффициенту разложения по сопутствующему базису .

Энциклопедичный YouTube

  • 1 / 5

    Величину тангенциального ускорения как проекцию вектора ускорения на касательную к траектории можно выразить так:

    a τ = d v d t , {\displaystyle a_{\tau }={\frac {dv}{dt}},}

    где v = d l / d t {\displaystyle v\ =dl/dt} - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

    Если использовать для единичного касательного вектора обозначение e τ {\displaystyle \mathbf {e} _{\tau }\ } , то можно записать тангенциальное ускорение в векторном виде:

    a τ = d v d t e τ . {\displaystyle \mathbf {a} _{\tau }={\frac {dv}{dt}}\mathbf {e} _{\tau }.}

    Вывод

    Вывод 1

    Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости , представленный в виде v = v e τ {\displaystyle \mathbf {v} =v\,\mathbf {e} _{\tau }} через единичный вектор касательной e τ {\displaystyle \mathbf {e} _{\tau }} :

    a = d v d t = d (v e τ) d t = d v d t e τ + v d e τ d t = d v d t e τ + v d e τ d l d l d t = d v d t e τ + v 2 R e n , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d(v\,\mathbf {e} _{\tau })}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dl}}{\frac {dl}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+{\frac {v^{2}}{R}}\mathbf {e} _{n}\ ,}

    где первое слагаемое - тангенциальное ускорение, а второе - нормальное ускорение .

    Здесь использовано обозначение e n {\displaystyle e_{n}\ } для единичного вектора нормали к траектории и l {\displaystyle l\ } - для текущей длины траектории ( l = l (t) {\displaystyle l=l(t)\ } ); в последнем переходе также использовано очевидное

    d l / d t = v {\displaystyle dl/dt=v\ }

    и, из геометрических соображений,

    d e τ d l = e n R . {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dl}}={\frac {\mathbf {e} _{n}}{R}}.}

    Вывод 2

    Если траектория гладкая (что предполагается), то:

    То и другое следует из того, что угол вектора к касательной будет не ниже первого порядка по . Отсюда сразу же следует искомая формула.

    Говоря менее строго, проекция v {\displaystyle \mathbf {v} \ } на касательную при малых d t {\displaystyle dt\ } будет практически совпадать с длиной вектора v {\displaystyle \mathbf {v} \ } , поскольку угол отклонения этого вектора от касательной при малых d t {\displaystyle dt\ } всегда мал, а значит косинус этого угла можно считать равным единице .

    Замечания

    Абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.

    Виды ускорений в СТО.

    Итак, мы показали, что существует два вида измеримых скоростей. Кроме того, быстрота, измеряемая в тех же единицах, тоже очень интересна. При малых значениях все эти скорости равны.

    А сколько же существует ускорений? Какое ускорение должно быть константой при равноускоренном движении релятивистской ракеты, чтобы космонавт всегда оказывал на пол ракеты одну и ту же силу, чтобы он не стал невесомым, или чтобы он не умер от перегрузок?

    Введем определения разных видов ускорений.

    Координатно-координатное ускорение dv /dt это изменение координатной скорости , измеренное по синхронизированным координатным часам

    dv /dt=d 2 r /dt 2 .

    Забегая вперед, заметим, что dv /dt = 1·dv /dt = g 0 dv /dt.

    Координатно-собственное ускорение dv /dt это изменение координатной скорости, измеренное по собственным часам

    dv /dt=d(dr /dt)/dt = gd 2 r /dt 2 .
    dv /dt = g 1 dv /dt.

    Собственно-координатное ускорение db /dt это изменение собственной скорости, измеренное по синхронизированным координатным часам , расставленным по ходу движения пробного тела:

    db /dt = d(dr /dt)/dt = g 3 v (v dv /dt)/c 2 + gdv /dt.
    Если v || dv /dt, тогда db /dt = g 3 dv /dt.
    Если v перпендикулярно dv /dt, тогда db /dt = gdv /dt.

    Собственно-собственное ускорение db /dt это изменение собственной скорости, измеренное пособственным часам , связанным с движущимся телом:

    db /dt = d(dr /dt)/dt = g 4 v (v dv /dt)/c 2 + g 2 dv /dt.
    Если v || dv /dt, тогдаdb /dt = g 4 dv /dt.
    Если v перпендикулярно dv /dt, тогда db /dt = g 2 dv /dt.

    Сравнивая показатели при коэффициенте g в четырех типах ускорений, записанных выше, замечаем, что в этой группе отсутствует член с коэффициентом g 2 при параллельных ускорениях. Но мы еще не взяли производные от быстроты. Это ведь тоже скорость. Возьмём производную по времени от быстроты, воспользовавшись формулой v/c = th(r/c):

    dr/dt = (c·arth(v/c))" = g 2 dv/dt.

    А если взять dr/dt, получим:

    dr/dt = g 3 dv/dt,

    или dr/dt = db/dt.

    Следовательно, мы имеем две измеримые скорости v и b , и ещё одну, неизмеримую, но наиболее симметричную, быстроту r. И шесть видов ускорений, два из которых dr/dt и db/dt совпадают. Какое же из этих ускорений является собственным, т.е. ощущаемым ускоряющимся телом?



    К собственному ускорению мы вернемся ниже, а пока выясним, какое ускорение входит во второй закон Ньютона. Как известно, в релятивистской механике второй закон механики, записанный в видеf =ma , оказывается ошибочным. Вместо него силу и ускорение связывает уравнение

    f = m (g 3 v (va )/c 2 + ga ),

    которое является основой для инженерных расчетов релятивистских ускорителей. Если мы сравним это уравнение с только что полученным уравнением для ускорения db /dt:

    db /dt = g 3 v (v dv /dt)/c 2 + gdv /dt,

    то заметим, что они отличаются лишь множителем m. То есть, можно записать:

    f = m·db /dt.

    Последнее уравнение возвращает массе статус меры инертности в релятивистской механике. Сила, действующая на тело, пропорциональна ускорению db /dt. Коэффициентом пропорциональности является инвариантная масса. Вектора силы f иускорение db /dt сонаправлены при любой ориентации векторов v иa , или b и db /dt.

    Формула, записанная через ускорение dv /dt, не дает такой пропорциональности. Сила и координатно-координатное ускорение в общем случае не совпадают по направлению. Параллельными они будут лишь в двух случаях: если вектора v иdv /dtпараллельны друг другу, и если они перпендикулярны друг другу. Но в первом случае сила f =mg 3 dv /dt, а во втором - f =mgdv /dt.

    Таким образом, в законе Ньютона мы должны использовать ускорение db /dt, то есть, изменениесобственной скоростиb , измеренное по синхронизированным часам.

    Возможно с таким же успехом можно будет доказать, что f = mdr /dt, где dr /dt - вектор собственного убыстрения, но быстрота величина неизмеримая, хотя и легко вычисляема. Будет ли верно векторное равенство, сказать не берусь, но скалярное равенство справедливо в силу того, что dr/dt=db/dt и f =mdb /dt.

    Ускорение – это величина, которая характеризует быстроту изменения скорости.

    Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

    Среднее ускорение

    Среднее ускорение > – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

    где – вектор ускорения .

    Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

    В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:

    Рис. 1.8. Среднее ускорение.

    В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

    Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

    Мгновенное ускорение

    Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

    Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями а Х, a Y , a Z).

    При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

    V 2 > v 1

    а направление вектора ускорения совпадает с вектором скорости 2 .

    Если скорость тела по модулю уменьшается, то есть

    V 2 < v 1

    то направление вектора ускорения противоположно направлению вектора скорости 2 . Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

    Рис. 1.9. Мгновенное ускорение.

    При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

    Тангенциальное ускорение

    Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

    Рис. 1.10. Тангенциальное ускорение.

    Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

    Нормальное ускорение

    Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

    Полное ускорение

    Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

    (согласно теореме Пифагора для прямоугольно прямоугольника).

    Направление полного ускорения также определяется правилом сложения векторов :

    = τ + n

    Координата (линейная, угловая).

    2)Перемещение ( ) – вектор, соединяющий начальную точку траектории с конечной.

    3) Путь () – расстояние пройденное телом от начальной точки до конечной.

    4) Линейная скорость:

    4.1) Мгновенная.

    Скоростью (мгновенной скоростью) движения называется векторная величина, равная отношению малого перемещения к бесконечно малому промежутку времени, за которое это перемещение производится

    В проекциях: U x =

    4.2) Средняя

    Средняя (путевая) скорость - это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден:

    Путевая скорость:

    Средняя путевая скорость, в отличие от мгновенной скорости не является векторной величиной.

    Можно также ввести среднюю скорость по перемещению , которая будет вектором, равным отношению перемещения ко времени, за которое оно совершено:

    Скорость перемещения:

    Средняя скорость в общем виде:

    5)Линейное ускорение:

    5.1) Мгновенная

    Мгновенным ускорением называется векторная величина, равная отношению малого изменения скорости к малому промежутку времени, за который происходило это изменение:

    Ускорение характеризует быстроту вектора в данной точке пронстранства.

    5.2) Средняя

    Среднее ускорение – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

    ;

    Изменение скорости:

    Нормальная и тангенциальная составляющие ускорения.

    Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

    Направление вектора тангенциального ускорения τ) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.



    Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения. Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

    Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

    Вопрос 2. Описание движения материальной точки (частные случи: равномерное движение по окружности, прямолинейное равномерное движение, равнопеременное движение по окружности).

    Равномерное движение по окружности.

    Равномерное движение по окружности – это простейший пример криволинейного движения . Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость .

    При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v (вэ) = const, а изменяется только направление вектора скорости . Тангенциальное ускорение в этом случае отсутствует (a r = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение а ЦС. В каждой точке траектории вектор центростремительного ускорения направлен к центру окружности по радиусу.

    Модуль центростремительного ускорения равен
    a ЦС =v 2 / R
    Где v – линейная скорость, R – радиус окружности

    Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус. Угол поворота измеряется в радианах.

    Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:
    ω = φ / t
    Единица измерения угловой скорости – радиан в секунду [рад/с]

    Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности.

    v = = = Rω или v = Rω

    Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности. Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.
    n = 1 / T

    T = 2π / ω
    То есть угловая скорость равна

    ω = 2π / T = 2πn
    Центростремительное ускорение можно выразить через период Т и частоту обращения n:
    a ЦС = (4π 2 R) / T 2 = 4π 2 Rn 2