Условия сохранения главного вектора количества движения системы. Школьная энциклопедия. Теорема об изменении момента количества движения точки

Из теоремы об изменении количества движения системы можно получить следующие важные следствия.

1. Пусть сумма всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения (20) следует, что при этом Таким образом, если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по модулю и направлению.

2. Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ) равна нулю:

Тогда из уравнений (20) следует, что при этом Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить количество движения системы не могут. Рассмотрим некоторые примеры.

Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить количество движения системы, равное до выстрела кулю. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т. е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

Работа гребного винта (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды, как внутренние, не могут изменить суммарное количество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы остается равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес

Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла ракетного двигателя). Действующие при этом силы давления будут силами внутренними и не могут изменить количество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, направленное назад, то ракета получает при этом соответствующую скорость, направленную вперед. Величина этой скорости будет определена в § 114.

Обращаем внимание на то, что винтовой двигатель (предыдущий пример) сообщает объекту, например самолету, движение за счет отбрасывания назад частиц той среды, в которой он движется. В безвоздушном пространстве такое движение невозможно. Реактивный же двигатель сообщает движение за счет отброса назад масс, вырабатываемых в самом двигателе (продукты горения). Движение это в равной мере возможно и в воздухе, и в безвоздушном пространстве.

При решении задач применение теоремы позволяет исключить из рассмотрения все внутренние силы. Поэтому рассматриваемую систему надо стараться выбирать так, чтобы все (или часть) заранее неизвестных сил сделать внутренними.

Закон сохранения количества движения удобно применять в тех случаях, когда по изменению поступательной скорости одной части системы надо определить скорость другой части. В частности, этот закон широко используется в теории удара.

Задача 126. Пуля массой , летящая горизонтально со скоростью и, попадает в установленный на тележке ящик с песком (рис 289). С какой скоростью начнет двигаться тележка после удара, если масса тележки вместе с ящиком равна

Решение. Будем рассматривать пулю и тележку как одну систему Это позволит при решении задачи исключить силы, которые возникают при ударе пули о ящик. Сумма проекций приложенных к системе внешних сил на горизонтальную ось Ох равиа нулю. Следовательно, или где - количество движения системы до удара; - после удара.

Так как до удара тележка неподвижна, то .

После удара тележка и пуля движутся с общей скоростью, которую обозначим через v. Тогда .

Приравнивая правые части выражений , найдем

Задача 127. Определить скорость свободного отката орудия, если вес откатывающихся частей равен Р, вес снаряда , а скорость снаряда по отношению к каналу ствола равна в момент вылета .

Решение. Для исключения неизвестных сил давления пороховых газов рассмотрим снаряд и откатывающиеся части как одну систему.

Просмотр: эта статья прочитана 23265 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Механической системой материальных точек или тел называется такая их совокупность, в которой положение и движение каждой точки (или тела) зависит от положения и движения остальных.
Материальное тело рассматривается, как система материальных точек (частиц), которые образуют это тело.
Внешними силами называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел, которые не принадлежат данной системе.
Внутренними силами , называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел той же системы, т.е. с которыми точки или тела данной системы взаимодействуют между собой.
Внешние и внутренние силы системы, в свою очередь могут быть активными и реактивными
Масса системы равняется алгебраической сумме масс всех точек или тел системыВ однородном поле тяжести, для которого, вес любой частицы тела пропорционален ее массе. Поэтому распределение масс в теле можно определить по положению его центра тяжести - геометрической точки С , координаты которой называют центром масс или центром инерции механической системы
Теорема о движении центра масс механической системы : центр масс механической системы движется как материальная точка, масса которой равняется массе системы, и к которой приложены все внешние силы, действующие на систему
Выводы:

  1. Механическую систему или твердое тело можно рассматривать как материальную точку в зависимости от характера ее движения, а не от ее размеров.
  2. Внутренние силы не учитываются теоремой о движении центра масс.
  3. Теорема о движении центра масс не характеризует вращательное движение механической системы, а только поступательное

Закон о сохранении движения центра масс системы:
1. Если сумма внешних сил (главный вектор) постоянно равен нулю, то центр масс механической системы находится в покое или движется равномерно и прямолинейно.
2. Если сумма проекций всех внешних сил на какую-нибудь ось равняется нулю, то проекция скорости центра масс системы на эту же ось величина постоянная.

Теорема об изменении количества движения.

Количество движения материальной точк и - векторная величина, которая равняется произведению массы точки на вектор ее скорости.
Единицей измерения количества движения есть (кг м/с).
Количество движения механической системы - векторная величина, равняющаяся геометрической сумме (главному вектору) количества движения всех точек системы.или количество движения системы равняется произведению массы всей системы на скорость ее центра масс
Когда тело (или система) движется так, что ее центр масс неподвижен, то количество движения тела равняется нулю (пример, вращение тела вокруг неподвижной оси, которая проходит через центр масс тела).
Если движение тела сложное, то не будет характеризовать вращательную часть движения при вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное движение системы (вместе с центром масс).
Импульс силы характеризует действие силы за некоторый промежуток времени.
Импульс силы за конечный промежуток времени определяется как интегральная сумма соответствующих элементарных импульсов
Теорема об изменении количества движения материальной точки :
(в дифференциальной форме): Производная за временем от количества движения материальной точки равняется геометрической сумме действующих на точки сил
(в интегральной форме): Изменение количества движения за некоторый промежуток времени равняется геометрической сумме импульсов сил, приложенных к точке за тот же промежуток времени.

Теорема об изменении количества движения механической системы
(в дифференциальной форме): Производная по времени от количества движения системы равняется геометрической сумме всех действующих на систему внешних сил.
(в интегральной форме): Изменение количества движения системы за некоторый промежуток времени равняется геометрической сумме импульсов, действующих на систему внешних сил, за тот же промежуток времени.
Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы.
Теорема об изменении количества движения механической системы и теорема о движении центра масс являются двумя разными формами одной теоремы.
Закон сохранения количества движения системы.

  1. Если сумма всех внешних сил, действующих на систему, равняется нулю, то вектор количества движения системы будет постоянным по направлению и по модулю.
  2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равняется нулю, то проекция количества движения на эту ось является величиной постоянной.

Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количество движения системы.

  1. Классификация сил, действующих на механическую систему
  2. Свойства внутренних сил
  3. Масса системы. Центр масс
  4. Дифференциальные уравнения движения механической системы
  5. Теорема о движении центра масс механической системы
  6. Закон о сохранении движения центра масс системы
  7. Теорема об изменении количества движения
  8. Закон сохранения количества движения системы

Язык: русский, украинский

Размер: 248К

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении

Лекция 5. Количество движения системы (импульс системы).

В данной лекции рассматриваются следующие вопросы:

1. Количество движения системы (импульс системы).

2. Теорема об изменении количества движения (импульса).

3. Закон сохранения количества движения (импульса).

4. Главный момент количеств движения (импульса) системы.

5. Теорема моментов.

6. Закон сохранения главного момента количеств движения (импульса).

Изучение данных вопросов необходимо для динамики колебательного движения механической системы, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

В предыдущих лекциях излагались методы определения движения материальной системы, которые сводились к составлению дифференциальных уравнений, как правило, второго порядка. И решение их оказывалось не всегда простым.

Если ввести новые обобщенные понятия, характеризующие свойства и движение системы в целом, то эти трудности нередко можно обойти. К ним относятся понятия о центре масс и кинетической энергии, которые уже нам знакомы, понятия о количестве движения материальной системы и моменте количества движения.

Теоремы, определяющие изменение этих характеристик, позволяют получить более полное представление о движении материальной системы.

Количество движения системы (импульс системы).

Количество движения (импульс тела) – векторная физическая величина, равная произведению массы тела на его скорость:

Импульс (количество движения) – одна из самых фундаментальных характеристик движения тела или системы тел.

Запишем II закон Ньютона в другой форме, учитывая, что ускорение Тогда следовательно

Произведение силы на время ее действия равно приращению импульса тела (рис. 1):

Где - импульс силы, который показывает, что результат действия силы зависит не только от ее значения, но и от продолжительности ее действия.

Рис.1

Количеством движения системы (импульсом) будем называть векторную величину , равную геомет­рической сумме (главному вектору) количеств движения (импульсов) всех точек системы (рис.2):

Из чертежа видно, что независимо от величин скоростей точек системы (если только эти скорости не параллельны) вектор может принимать любые значения и даже оказаться равным нулю, когда многоугольник, построенный из векторов , замкнется. Следова­тельно, по величине нель­зя полностью судить о ха­рактере движения системы.

Рис.2

Найдем формулу, с по­мощью которой значительно легче вычислять величину , а также уяснить ее смысл.

Из равенства

следует, что

Беря от обеих частей производную по времени, получим

Отсюда находим, что

т.е. количество движения (импульс) системы равно произведению массы всей системы на скорость ее центра масс . Этим результатом особенно удобно пользоваться при вычислении количеств движения твердых тел.

Из формулы видно, что если тело (или система) движется так, что центр масс остается неподвижным, то количество движения тела равно нулю. Например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс, будет равно нулю.

Если же движение тела является сложным, то величина не будет характеризовать вращательную часть движения вокруг центра масс. Например, для катящегося колеса независимо от того, как вращается колесо вокруг его центра масс С .

Таким образом, количество движения характеризует только поступательное движение системы. При сложном же движении величина характеризует только поступательную часть движения системы вместе с центром масс.

Теорема об изменении количества движения (импульса).

Рассмот­рим систему, состоящую из п материальных точек. Составим для этой системы дифференциальные уравнения движения и сложим их почленно. Тогда получим:

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,

Окончательно находим:

Уравнение выражает теорему об изменении коли­чества движения (импульса) системы в дифференциальной форме: производная по времени от количества движения (импульса) системы равна геометрической сумме всех действующих на систему внешних сил .

Найдем другое выражение теоремы. Пусть в момент t=0 количество движения системы равно , а в момент становится равным . Тогда, умножая обе части равенства на dt и интегрируя, получим:

так как интегралы, стоящие справа, дают импульсы внешних сил.

Уравнение выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежу­ток времени равно сумме импульсов действующих на систему внешних сил за тот же промежуток времени.

В проекциях на координатные оси будем иметь:

Укажем на связь между доказанной теоремой и теоремой о дви­жении центра масс. Так как то, подставляя это значение в равенство и учитывая, что , мы получим .

Следовательно, теорема о движении центра масс и теорема об изменении количества движения системы представляют собой, по существу, две разные формы одной и той же теоремы. В тех случаях, когда изучается движение твердого тела (или системы тел), можно в равной мере пользоваться любой из этих форм.

Практическая ценность теоремы состоит в том, что она позволяет исключить из рассмотрения наперед неизвестные внутренние силы (например, силы давления друг на друга частиц жидкости).

Закон сохранения количества движения (закон сохранения импульса).

Из теоремы об изменении количества движения системы можно получить следую­щие важные следствия:

1) Пусть сумма всех внешних сил, действующих на замкнутую систему, равна нулю:

Тогда из уравнения следует, что Q= =const. Таким образом, если сумма всех внешних сил, действующих на замкнутую систему, равна нулю, то вектор количества движения (импульса) системы будет постоянен по модулю и направлению.

2) Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например Оx ) равна нулю:

Тогда из уравнения следует, что при этом Q x =const. Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения (импульса) системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы: при любом характере взаимодействия тел, образующих замкнутую систему, вектор полного импульса этой системы все время остается постоянным.

Из них следует, что внутренние силы изменить суммарное количество движения системы не могут.

Закон сохранения полного импульса изолированной системы – это универсальный закон природы. В более общем случае, когда система незамкнута, из следует, что полный импульс незамкнутой системы не остается постоянным. Его изменение за единицу времени равно геометрической сумме всех внешних сил.

Рассмотрим неко­торые примеры:

а) Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить суммарное количество движения системы. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т.е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

б) Работа гребного винта (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды как внутренние не могут изменить суммарное коли­чество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы останется равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес.

в) Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла реактивного двигателя). Действующие при этом силы давления бу­дут силами внутренними, и они не могут изменить суммарное коли­чество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, на­правленное назад, то ракета получает при этом соответствующую скорость движения вперед.

Пример 1. На рельсах стоит платформа массой m 1 =10 т. На платформе закреплено орудие массой m 2 =5 т, из которого производится выстрел вдоль рельсов. Масса снаряда m 3 =100 кг; его начальная скорость относительно орудия v 0 =500 м/с. Найти скорость платформы в первый момент после выстрела, если: 1) платформа стояла неподвижно (v = 0); 2) платформа двигалась со скоростью v = 18 км/ч, а выстрел был произведен в направлении ее движения; 3) платформа двигалась со скоростью v = 18 км/ч, а выстрел был произведен в направлении, противоположном направлению ее движения.

Решение. Для решения задачи воспользуемся законом сохранения импульса, утверждающим, что импульс замкнутой системы остается постоянным.

Запишем импульс системы, состоящей из пушки, орудия и снаряда, до выстрела () и после него (), в результате которого этот импульс меняется. Напомним, что суммарный импульс системы представляет собой векторную сумму импульсов тел, входящих в систему.

1) Импульс системы до выстрела

т.к. вначале платформа с орудием покоилась (v =0).

После выстрела импульс системы

По закону сохранения импульса , следовательно,

Спроецируем это уравнение на выбранную ось х (рис.3):

Рис.3

Обратим внимание на следующий факт. Из опыта мы знаем, что в результате выстрела платформа с орудием откатится в сторону, противоположную выстрелу, поэтому при проецировании мы сразу можем учесть это, поставив знак «минус» перед скоростью u платформы. Тогда мы получим

В ряде случаев, когда заранее нет ясности в том, в какую сторону будет двигаться объект, считаем, что скорость направлена вдоль оси х . В этом случае положительное значение полученного результата вычислений подтвердит наше предположение, а отрицательное – укажет на то, что движение происходит в направлении, противоположном выбранному.

2) Закон сохранения импульса в случае, когда платформа движется со скоростью v =18 км/ч = 5 м/с, имеет вид

В проекциях на ось х (рис.4):

Рис.4

Обратим внимание на то, что, посчитав, как в предыдущем случае, что платформа после выстрела начнет двигаться в обратную сторону, мы ошиблись, на что указывает знак «минус» в полученном ответе. Значит, направление движения платформы осталось прежним, но скорость ее уменьшилась.

3) Закон сохранения импульса в третьем случае имеет вид, аналогичным тому, что был записан для второго случая, т.е.

с той лишь разницей, что при проецировании на ось х (рис.5), получим другие знаки для скоростей:

Рис.5

Таким образом, платформа будет двигаться в том же направлении со скоростью большей, чем первоначальная.

Пример 2. На железнодорожной платформе, движущейся по инерции со скоростью v , укреплено орудие, ствол которого направлен в сторону движения платформы под углом α к горизонту (рис.5.1). Орудие произвело выстрел, в результате чего скорость платформы с орудием уменьшилась в три раза. Найти скорость снаряда относительно орудия при вылете из ствола. Масса снаряда m 1 , масса платформы с орудием m 2 .

Рис.5.1

Решение. На систему тел “платформа с орудием + снаряд” действуют внешние силы - тяжести и нормального давления со стороны рельсов, направленные вертикально (горизонтальные силы трения можно считать пренебрежимо малыми) и внутренняя сила - давления газов, образующихся при выстреле. Следует учесть, что при выстреле сила нормального давления превышает силу тяжести, их равнодействующая не равна нулю. Следовательно, при выстреле вертикальная составляющая импульса системы не сохраняется, горизонтальная составляющая импульса останется неизменной.

1. Если главный вектор всех внешних сил системы равен нулю (), то количество движения системы постоянно по величине и направлению.

2. Если проекция главного вектора всех внешних сил системы на какую-либо ось равна нулю (
), то проекция количества движения системы на эту ось является постоянной величиной.

Теорема о движении центра масс.

Теорема Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к рассматриваемой механической системе.


, следовательно

Момент количества движения системы.

Моментом количества движения системы материальных точекотносительно некоторого центраназывается векторная сумма моментов количества движения отдельных точек этой системы относительно того же центра

Моментом количества движения системы материальных точек
относительно какой-либо оси
, проходящей через центр, называется проекция вектора количества движения
на эту ось
.

Момент количества движения твердого тела относительно оси вращения при вращательном движении твердого тела.

Вычислим момент количества движения твердого тела относительно оси вращения.

Момент количества движения твердого тела относительно оси вращения при вращательном движении равен произведению угловой скорости тела на его момент инерции относительно оси вращения.

Теорема об изменении момента количества движения системы.

Теорема. Производная по времени от момента количества движения системы, взятого относительно какого-нибудь центра, равна векторной сумме моментов внешних сил, действующих на систему относительно того же центра.

(6.3)

Доказательство: Теорема об изменении момента количества движения для
точки имеет вид:

,

Сложим все уравнений и получим:


или
,

что и требовалось доказать.

Теорема. Производная по времени от момента количества движения системы, взятого относительно какой-либо оси, равна векторной сумме моментов внешних сил, действующих на систему относительно той же оси.

Для доказательства достаточно спроектировать векторное уравнение (6.3) на эту ось. Для оси
это будет выглядеть так:.

(6.4)

Теорема об изменении момента количества движения системы относительно центра масс. (без доказательства)

Для осей движущихся поступательно вместе с центром масс системы, теорема об изменении момента количества движения системы относительно центра масс сохраняет тот же вид, что и относительно неподвижного центра.

Модуль 2. Сопротивление материалов.

Тема 1 растяжение-сжатие, кручение, изгиб.

Деформации рассматриваемого тела (элементов конструкции) возникают от приложения внешней силы. При этом изменяются расстояния между частицами тела, что в свою очередь приводит к изменению сил взаимного притяжения между ними. Отсюда, как следствие, возникают внутренние усилия. При этом внутренние усилия определяются универсальным методом сечений (или метод разреза).

Известно, что различают силы внешние и силы внутренние. Внешние усилия (нагрузки) – это количественная мера взаимодействия двух различных тел. К ним относятся и реакции в связях. Внутренние усилия – это количественная мера взаимодействия двух частей одного тела, расположенных по разные стороны сечения и вызванные действием внешних усилий. Внутренние усилия возникают непосредственно в деформируемом теле.

На рис.1 приведена расчетная схема бруса с произвольной комбинацией внешней нагрузки образующую равновесную систему сил:

Сверху вниз: упругое тело, левая отсеченная часть, правая отсеченная частьРис.1. Метод сечений.

При этом, реакции связей определяются из известных уравнений равновесия статики твердого тела:

где х 0 , у 0 , z 0 - базовая система координат осей.

Мысленное разрезание бруса на две части произвольным сечением А (рис.1 a), приводит к условиям равновесия каждой из двух отсеченных частей (рис.1 б,в). Здесь {S’ } и {S" }- внутренние усилия, возникающих соответственно в левой и правой отсеченных частях вследствие действия внешних усилий.

При составлении мысленно отсеченных частей, условие равновесия тела обеспечивается соотношением:

Так как исходная система внешних сил (1) эквивалентна нулю, получаем:

{S ’ } = – {S ” } (3)

Это условие соответствует четвертой аксиоме статики о равенстве сил действия и противодействия.

Используя общую методологию теоремы Пуансо о приведении произвольной системы сил к заданному центру и выбрав за полюс приведения центр масс, сечения А " , точку С " , систему внутренних усилий для левой части {S } сводим к главному вектору и главному моментувнутренних усилий. Аналогично делается для правой отсеченной части, где положение центра масс сеченияА”; определяется, соответственно, точкой С " (рис.1 б,в).

Таким образом главный вектор и главный момент системы внутренних усилий, возникающие в левой, условно отсеченной части бруса, равны по величине и противоположны по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части.

График (эпюра) распределения численных значений главного вектора и главного момента вдоль продольной оси бруса и предопределяют, прежде всего, конкретные вопросы прочности, жесткости и надежности конструкций.

Определим механизм формирования компонент внутренних усилий, которые характеризуют простые виды сопротивлений: растяжение-сжатие, сдвиг, кручение и изгиб.

В центрах масс исследуемых сечений С" или С " зададимся соответственно левой (с", х", у", z") или правой (с", х", у", z”) системами координатных осей (рис.1 б, в), которые в отличие от базовой системы координат x, у, z будем называть "следящими". Термин обусловлен их функциональным назначением. А именно: отслеживание изменения положения сечения А (рис.1 а) при условном смещении его вдоль продольной оси бруса, например при: 0 х’ 1 а, аx’ 2 b и т.д., где а и b - линейные размеры границ исследуемых участков бруса.

Зададимся положительными направлениями проекций главного вектора илии главного моментаилина координатные оси следящей системы (рис.1 б, в):

{N ’ , Q ’ y , Q ’ z } {M ’ x , M ’ y , M ’ z }

{N ” , Q ” y , Q ” z } {M ” x , M ” y , M ” z }

При этом положительные направления проекций главного вектора и главного момента внутренних усилий на оси следящей системы координат соответствуют правилам статики в теоретической механике: для силы - вдоль положительного направления оси, для момента - против вращения часовой стрелки при наблюдении со стороны конца оси. Они классифицируются следующим образом:

N x - нормальная сила, признак центрального растяжения или сжатия;

М x - внутренний крутящий момент, возникает при кручении;

Q z , Q у - поперечные или перерезывающие силы – признак сдвиговых деформаций,

М у , М z - внутренние изгибающие моменты, соответствуют изгибу.

Соединение левой и правой мысленно отсеченных частей бруса приводит к известному (3) принципу равенства по модулю и противоположной направленности всех одноименных компонент внутренних усилий, а условие равновесии бруса определяется в виде:

Как естественное следствие из соотношений 3,4,5 полученное условие является необходимым для того, чтобы одноименные компоненты внутренних усилий попарно образовали подсистемы сил эквивалентные нулю:

1. {N ’ , N ” } ~ 0 > N ’ = – N

2. {Q y , Q y } ~ 0 > Q y = – Q y

3. {Q z , Q z } ~ 0 > Q z = – Q z

4. {М x , M x } ~ 0 > М x = – M x

5. {M y , M y } ~ 0 > M y = – M y

6. {М z , M z } ~ 0 > М z = – M z

Общее число внутренних усилий (шесть) в статически определимых задачах совпадает с количеством уравнений равновесия для пространственной системы сил и связано с числом возможных взаимных перемещений одной условно отсеченной части тела по отношению к другой.

Искомые усилия определяются из соответствующих уравнений для любой из отсеченных частей в следящей системе координатных осей. Так, для любой отсеченной части соответствующие уравнения равновесия приобретают вид;

1. ix = N + P 1x + P 2x + … + P kx = 0 > N

2. iy = Q y + P 1y + P 2y + … + P ky = 0 > Q y

3. iz = Q + P 1z + P 2z + … + P kz = 0 > Q z

4. x (P i ) = M x + M x (P i ) + … + M x (P k ) = 0 > M x

5. y (P i ) = M y + M y (P i ) + … + M y (P k ) = 0 > M y

6. z (P i ) = M z + M z (P i ) + … + M z (P k ) = 0 > M z

Здесь для простоты обозначений системы координат с" х" у" z" и с" х" у" т" заменены единой оxуz .

Из теоремы об изменении количества движения системы можно получить следую­щие важные следствия:

1) Пусть сумма всех внешних сил, действующих на систему, равна нулю:

если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по модулю и направлению.

2) Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например Оx ) равна нулю:

Тогда из уравнения следует, что при этом . Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить суммарное количество движения системы не могут. Рассмотрим неко­торые примеры:

а) Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить суммарное количество движения системы. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т.е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

б) Работа гребного винта (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды как внутренние не могут изменить суммарное коли­чество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы останется равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес.

в) Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла реактивного двигателя). Действующие при этом силы давления бу­дут силами внутренними, и они не могут изменить суммарное коли­чество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, на­правленное назад, то ракета получает при этом соответствующую скорость движения вперед.

Принцип Даламбера.

Все методы решения задач динамики, которые мы до сих пор рассматривали, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствиями этих законов. Однако, этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Пусть мы имеем систему, состоящих из n материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил и (в которые входят и активные силы, и реакции связи) точка получает по отношению к инерционной системе отсчета некоторое ускорение .

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки(иногда даламберовой силой инерции).

Тогда оказывается, что движение точки обладает следующим общим свойством: если в каждый момент времени к фактически действующим на точку силам и прибавить силу инерции , то полученная система сил будет уравновешенной, т.е. будет

.

Это выражение выражает принцип Даламбера для одной материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает . Перенося здесь член в правую часть равенства и придем к последнему соотношению.

Повторяя проделанные высшее рассуждения по отношению к каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы, кроме фактически действующих на ней внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и к ней можно будет применять все уравнения статики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; что делает единообразный подход к решению задач и обычно намного упрощает соответствующие расчёты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики.

Применяя принцип Даламбера, следует иметь в виду, что на точку механической системы, движение которой изучается, действуют только внешние и внутренние силы и , возникающие в результате взаимодействия точек системы друг с другом и с телами, не входящими в систему; под действием этих сил точки системы и движутся с соответствующими ускорениями . Силы же инерции, о которых говорится в принципе Даламбера, на движущиеся точки не действуют (иначе, эти точки находились бы в покое или двигались без ускорений и тогда не было бы и самих сил инерции). Введение сил инерции - это лишь приём, позволяющий составлять уравнения динамики с помощью более простых методов статики.